UNIVERSITY OF ALASKA ANCHORAGE

CSCE A470

CAPSTONE PROJECT

Engineering on Display
Indoor Navigation

Author:
Nailya Galimzyanova

Supervisor:
Prof. Adriano Cavalcanti, PhD

Abstract

The target of this capstone is to present create an application to distribute information and notifications for a large group of people in new UAA Engineering & Industry Building. The information about utilities will allow students and researchers monitoring of processes and operations and perform experimental engineering analysis. The Engineering on Display (EOD) application will be implemented in two forms: an Android application and Webpage. This application’s main focus is to properly display the data graphs for which the data pulled from database on the server and have screensaver-like functionality to display news and achievements. Furthermore, this project has indoor navigation functionality which purpose is to give navigation inside the building for those who are not familiar with its arrangement utilizes wifi connections information to determine the locations. Wifi triangulation, fingerprinting, and trilateration are the most practical technique for the problem of Indoor localization. This paper explores the implementation methods of the EOD Application, covers all aspects of the development process and the logic behind design choices which were made.
Acknowledgements

This project fulfilled all of the requirements and want to thank to our team members: Brian Kapal, a Brent Gonzales, SookJin Yoon and professor for collaborating and making the project go through it.
Index

Table List...1
Figure List...2
Chapter 1. Introduction ...3
 1.1 Introduction ...3
 1.2 Application ..4
 1.3 Motivation ..5
 1.4 Recent Developments ...6
Chapter 2. System Integration and Modeling...8
 2.1 Introduction ..8
 2.2 Sensors and Siemens Database ...8
 2.3 UAA Server Database ...9
 2.4 EOD Application ..10
 2.5 System Integration and Architecture ...10
 2.6 Agile methodology ...12
 2.7 Technology and tools ...13
Chapter 3. Design and Testing / User Interface...15
 3.1 Introduction ...15
 3.2 General Interface ..15
 3.3 Graphs and Plots ..15
 3.4 Notifications ...16
 3.5 Indoor Navigation ...17
 3.5.1 Android API ..17
 3.5.2 Trilateration ..18
 3.5.3 Wifi Fingerprinting ..19
 3.5.4 Triangulation ...19
 3.6 Testing ...19
Chapter 4. Results and Discussion...21
 4.1 Introduction ...21
 4.2 Back End ..21
 4.3 Graphs and Plots ..23
 4.4 Notifications ...24
 4.5 Navigation ...25
Chapter 5. Summary and Conclusion..26
 5.1 Introduction ...26
Table List

Table 1.1 Open source licenses comparison ... 5
Table 2.1 Gant chart for the project tasks ... 11-12
Figure List

Figure 1.1 The model of the UAA’s Engineering & Industry Building ..4
Figure 1.2 Proposed view for navigation feature ...6
Figure 1.3 3D Wayfinder application interface ..7
Figure 2.1 Engineering on Display sensors sample ...9
Figure 2.2 System Layout ..11
Figure 2.3 Burn-down chart for the project units ..13
Figure 2.4 The touch screen monitor supplied by Siemens to be displayed in the UAA Engineering & Industry Building ...14
Figure 3.1 Proposed charts ...16
Figure 3.2 Current UAA Main page notification ..17
Figure 3.3 GPS trilateration ..18
Figure 3.4 Triangulation scheme. ..19
Figure 3.5 Agile methodology iteration cycle. ...20
Figure 4.1 EOD database outline ..22
Figure 4.2 Bar charts which showed data variation by month ..23
Figure 4.3 Area charts which showed bi-hourly data changes ..24
Figure 4.4 Screenshot of the EOD notification element ...25
Figure 5.1 The EOD application running on multiple platforms ..28
Chapter 1
Introduction

1.1 Introduction

The main purpose of the project is to create a webpage and an Android application to display utility data for the building from its sensors. The idea of the Engineering on Display (EOD) project was proposed by T. Bartlett Quimby, interim dean of UAA College of Engineering. He suggested creating an application for displaying information about UAA Engineering & Industry Building making it available to the public. According to Ryan Buchholdt:

A new 81,500 sf facility will house engineering laboratory and teaching areas not currently available on campus. The project includes: communication labs, electrical engineering labs, fluid labs, heat and mass transfer labs, foundation engineering, transportation and highway engineering, land surveying, machine shop, wood shop, service yard, and conferencing/collaborative learning areas.

The figure 1 represent the model of the Engineering & Industry Building which will be opened on July 2015; however, in the future it will be expanded to represent the data from all of the buildings on the UAA main campus. There are several partners involved: Siemens Company, which actually built the building and will be storing data from the sensors; UAA Engineering team which are responsible for monitoring and maintenance of the building and providing us with recent data; UAA IT department who will provide safe access to the data from the server; student developers to implement the application; professor Adriano Cavalcanti, the direct supervisor of the project; and the Dean of UAA College of Engineering. The members of the student developers team are Brent Gonzales, Brian Kapala, Sukjin Yoon and Nailya Galimzyanova (myself). The EOD application will be displayed on the large screens which will be located in the UAA Engineering & Industry Building. It also will be available to the users on mobile devices or personal computers. The application in the Engineering & Industry Building will work as a display screen for data and information which will be continuously functioning.
1.2 Application

The EOD application will display the information on the big size screens of the Engineering & Industry Building at the UAA. The EOD application will be an interactive application where users will utilize touch screen features to access needed information; otherwise, while nobody is interacting with the application, it will display information about the building, graphs for utilities, postings from School of Engineering, and etcetera. This information will serve the purpose to distribute the information about the recent accomplishments and events, building data and indoor building navigation. The EOD application will be presenting near real time data which will allow ongoing monitoring of the systems. The EOD application maybe expanded to be used for any other building on campus simply by adding necessary information applied to desired building.

The EOD application will use the Berkely Software Distribution license (BSD), which according to Bruce Montague “allows proprietary use and allows the software released under the license to be incorporated into proprietary products. Works based on the material may be released under a proprietary license as closed source software” (2012). Figure 3 below shows open source licenses represent open source licenses which were considered for this project. The advantage of the BSD license is that on the early stage of developing the application many programmers all over the world can contribute to it. Eventually, one can combine the software under BSD license with proprietary software and release it under a proprietary license, but have to retain the BSD license text and notices.
<table>
<thead>
<tr>
<th>Licenses:</th>
<th>Project-based</th>
<th>File-based</th>
<th>Permissive</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPL 2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LGPL 2.1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CDDL 1.0</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CPL 1.0</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ECLIPSE 1.0</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>APACHE 2.0</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NEW BSD</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MIT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

You may:

- Use: Yes
- Modify: Yes
- Distribute: Yes
- Link to other programs under at least some circumstances without creating a derived work: Yes

If you distribute you are required to:

- Make source code available: Yes
- Display copyright notice: Yes
- Provide copy of license: Yes
- Mark changes: Yes
- Disclaim warranty: Yes
- Disclaim liability: Yes
- Indemnify earlier contributors when you offer a warranty of your own: Yes

Disclaimer: This chart is designed to provide information in regard to the subject matter covered. It is to be understood that the author is not engaged in rendering legal or other professional service. If legal advice or other expert assistance is required, the services of a professional person should be sought. This chart is in no way intended to convey the official position of Sun Microsystems with regard to any software license.

Table 1.1. Open source licenses comparison.

1.3 Motivation

The purpose of the application is to distribute the information to the large auditory. This information will give access to the building data, and will attract prospective students to choose engineering path. Another useful feature of the EOD application is to give navigation inside the building for those who are not familiar with its arrangement. The information about utilities will allow students and researchers monitoring of processes and operations and perform experimental engineering analysis. In addition, this information about resource usage of the building will motivate users to save electricity, water, heat usage to improve the environment.

The indoor navigation feature will be designed for students and visitors unfamiliar with building arrangement to help them find a right study room or place. The indoor wifi navigation is a primary alternative to GPS, where GPS fails to give precise location, wifi navigation is especially helpful to determine location in the multilevel buildings, such as Engineering & Industry Building is going to be. Later on the indoor navigation feature will be expanded to cover all campus and to give shortest path, distance and approximate time to reach the buildings,
which will help students to plan their class schedule. The indoor Navigation will be primary feature which Nailya Galimzyanova (myself) will be implementing.

![Third Floor Plan]

Figure 1.2 Proposed view for navigation feature.

1.4 Recent Developments

Indoor navigation may be used in any building with wifi access, such as hotel, store, university, and etcetera. In addition, indoor navigation is applied in mobile robotics and …. The reason why developers and engineers develop alternatives to the GPS is that GPS systems aren’t accurate enough to determine precise location inside the building. The signals from the satellites are weakened and scattered by roofs, walls and other objects, in some cases making an errors bigger than the building or hallway in it. Moreover, the GPS maps generally not as precise as building map, and it in most cases it is necessary to navigate in a small space to find particular room. There are many different approaches to improve indoor navigation. The most usable are: wifi and Bluetooth signals mounted into the device, light or magnetic field, passive radio frequency identification tags (RFIDs), etcetera. We decided to apply the hybrid system of indoor navigation using the GPS and wifi triangulation approaches. It will be most feasible approach for UAA due to wifi availability on campus.

There are many indoor navigation applications which already exist in the market. The one which is worth mentioning is 3D Wayfinder which is used to help visitors to navigate in large public buildings (shopping centers, airports, train stations, hospitals, universities etc.) 3D Wayfinder uses a 3D floor plans of a building and renders it in real-time. 3D Wayfinder is using JavaScript and WebGL based Frakengine developed by 3D Technologies R&D. The figure below represents 3D Wayfinder application interface.
Figure 1.3 3D Wayfinder application interface.
Chapter 2
System Integration and Modeling / Methodology

2.1 Introduction

This chapter describes system integration, system modeling and methodology behind EOD project. It will describe all subsystems involved in a project and their interaction in parts and as whole system. This chapter also covers abilities and limitation of subsystems and their capabilities to act together. The EOD project consists of the following four main subsystems:

1. Physical elements – collect data from sensors about building utilities and conditions
2. Siemens database – stores data from the sensors
3. UAA Server – stores received data from the Siemens database
4. EOD application - distributes information to the public

This chapter also describes system architecture and methodology which were used for this project.

2.2 Sensors and Siemens Database

This project utilizes the data received from sensors installed within UAA Engineering & Industry Building. There are several types of sensors installed, but our application will focus on temperature, humidity, and air quality sensors. It will also use the data about energy and water usage within the building. The Figure 2.1 on the following page represents the sensors structure and what data is provided by each sensor.

The Siemens Apogee System has already an API that we can easily and directly connect with an external system this solution is used at University of Alaska Fairbanks(UAF). At UAF Siemens has provided an Apogee controller that communicates information to a Triduim Jace
BACnet provided by Lucid Software Company which implemented website for the UAF. The Jace controller converts the BACnet data to another protocol and sends that data to the Lucid website. While this system exist and looks like a good real-time solution, it is not applicable to EOD project, since this software is not installed at UAA, the cost of software is exceeds EOD project budget and Siemens data access restriction. Therefore, our team and Siemens Operations Supervisor found alternative solution to send Comma Separated File (CSV) file with the most recent data for the last reading updates about every 15 minutes; this will enable us to upload new data every hour to the EOD database and application.

Figure 2.1 Engineering on Display sensors sample.

2.3 UAA Server Database

UAA IT Services allocated virtual server space for the EOD project. We also have second server for the testing purposes to test if the connection working on the back-end side and simulate the data communication between Siemens server and UAA server. Brian Kapala is responsible for the setting up the server and database. The main server will run MySQL and the front end of the system. We set up several users to distinguish access rights to the server: root user (full access), data reviewer user (access to control mySQL database), and application user (read only access).
2.4 EOD Application

The EOD application will be implemented in two forms: the webpage and the Android application. The reasons for doing two implementations are to expand user range and to keep appealing interfaces for displaying on the screen. Both of the implementations will have same basic features and common style; except, the difference is that the Android application will have a two state setup: user interaction and screen saver ability to display some data in animated message form while nobody interacts with the application. The EOD application will summarize and display data in the form of graph plots; the data will include electricity usage, water usage, temperature, and etcetera. Moreover, the webpage side of the application will have building navigation to display current location of the user.

2.5 System Integration and Architecture

This project uses Client-Server architecture because in our design client requests information from the server; and the server responds to the request by authorizing client and sending requested data and information, also server processing the CSV file and pushes it into database. or providing requested data from the database. As for design patterns our project close to Model-View-Controller (MVC) design pattern because we separated user interface from computational elements. Where:

- **Model** - Encapsulates system data and operations on the data – basically it is our database (backend)
- **View** - Displays data obtained from the model to the user – we have html files to process view (GUI)
- **Controller** - Handles events that affect the model or view php code to process the data submission and retrieving

The bottom up approach to describe the system is a type of information processing based on incoming data from the environment to form apperception. Data from Siemens sensors will be transmitted to the Siemens database. Then Siemens will provide the data updates from their database in a form of Comma-Separated Values (.csv) file by pushing it into UAA’s server. Every pushed file will override the old data file. Then, the UAA server will retrieve these files and push it to the MySQL database. Then, EOD application will pull new data to upload information every hour. This project consists of several units; therefore, while each member of student developers will be participating in the development process, we will split up the responsibility for the units. Brent Gonzales and Sukjin Yoon will be responsible for the Android application, Nailya Galimzyanova (myself) will be implementing the webpage features and building navigation, and Brian Kapala will be responsible for the database site as well as front and back end connection. The overview of the communication between systems is given on the previous page in figure 2.2.
Figure 2.2 System Layout.

An alternative way to describe our system integration has top down approach; first, overview the system, second, refine subsystems and describe in greater detail. The EOD application distributes information to the public and has two forms webpage and Android application. The Webpage will have graphs and plots to output data about the building environment; it will, also have notification section to display information from UAA College of Engineering. The EOD Android application of the system will have the same functionality as a website with additional navigation system. The data for the application is pulled from MySQL database on the UAA EOD server. In addition, UAA server has functionality to preprocess data from csv file to the MySQL database, when csv file is updated by Siemens. The following Gant chart represents estimated timeline for this project. Since it is a team project this chart includes all tasks for all team members.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Jan 20-Feb 1</th>
<th>Feb 2-Feb 14</th>
<th>Feb 21-Mar 1</th>
<th>Mar 1-Mar 14</th>
<th>Mar 15-Mar 30</th>
<th>Apr 1-Apr 14</th>
<th>Apr 15-May 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set the requirements, access permissions</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set up the Server</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create Database</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create General Interface</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create Graphs and plots</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create Notifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implement navigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Indoor navigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Design review
Testing
Publishing

Table 2.1 Gant chart for the project tasks (X-completed tasks, □-partially completed, -Not completed).

2.6 Agile methodology

Agile Methodology is methodologies where requirements and solutions evolve through collaboration teams and clients. According to Wikipedia “It promotes adaptive planning, evolutionary development, early delivery, continuous improvement, and encourages rapid and flexible response to change.” Most agile development methods break tasks into small increments with minimal planning and do not directly involve long-term planning. Agile project timeline broken into time units and after each unit testing is performed. Agile methodology is efficient and requires face-to-face communication with the client and adapting under new feedback. This is a short term project which will require covering wide variety of different features.

Below are the specifications for the EOD project:

1. Setting up the server -1 unit
2. Processing the data from CSV file into MySQL database – 3 units
3. A query functions - 1 unit
 a) Perform look-ups based on several search criteria
 b) Produce ad-hoc reports based on several criteria
4. A webpage - 4 unit
 a) Display notifications
 b) Preprocess and display graphs
 c) Display relevant information about building and UAA College Engineering
5. Android application – 5 units
 a) Display notifications
 b) Preprocess and display graphs
 c) Display relevant information about building and UAA College Engineering
 d) Building Navigation System
6. Administrator management– 1 units
 a) Alert (perhaps by email) about system interruptions
 b) Provide a means to temporary upload notification pictures.

Figure 2.3 on the next page is burn down chart for the project units implementation.
Figure 2.3 Burn-down chart for the project units.

2.7 Technology and tools

The project will be implemented on Android Platform due to rapid increase Android devices on the market. The Webpage will be implemented in the following languages html, JavaScript, Jquery and PHP using Netbeans IDE. PHP will be used when communication between client and server needed and for preprocessing the data from MySQL database since PHP language was designed to be compiled on the server. Jquery and JavaScript will be used to process front-end interactions.

We will be using Github account to instantly upload the developing code. My Github Account is https://github.com/triangulation

The hardware for the EOD displays were donated by Siemens, these computers are running Windows 8 with and i5 processor and 8GB of RAM and have 27” display on the first floor and 22” screens on floors two through four. For the training purposes we used Nexus 7 Android tabled and Samsung Galaxy devices
Figure 2.4 The touch screen monitor supplied by Siemens to be displayed in the UAA Engineering & Industry Building.
Chapter 3

Design and Testing / User Interface

3.1 Introduction

This chapter describes the user interface and Indoor Navigation approach. It also outlines front end and back end design of the application and describes methods which were used to test the application. This chapter focuses on the front end design, describing interface of the EOD application, opening up notification system and graphs and plots design choices.

3.2 General Interface

Obviously, the interface of webpage and Android application will be different to accommodate user habits. Screens for user devices will vary in the dimensions and EOD application should support all of them. Therefore, we will need to implement clear navigation aids using clear and consistent icons, graphic identity schemes, page titles and headings, etcetera to help users find needed information without wasting time. EOD application will have relatively consistent layout between webpage and Android application: header, local navigation, and content elements that together will be familiar to the user interactions in both implementations. Header area will include major navigation points, such as home page, utilities (water, electricity, gas, etc), history, indoor navigation, and help. Moreover, the EOD application interface will use green and gold theme to mimic UAA theme. In addition this application will require administrative interface for the publisher to post and update information and supporting images.

3.3 Graphs and Plots

Graphs and plots one of the most important components of the EOD application. Due to limited time frame for this project the EOD application will be concentration on the few data measures, such as water usage, electricity usage and temperature. This data was selected because it is the most useful data for regular user and it can be easily visualized. The best approach is to combine the three data measurements in one graph since the chosen data depend one on each
other. Graphs are a visual representation of the relationship between variables, so users can quickly derive and understand which would not come from lists of values. This will allow user to see inner dependence, for example if temperature goes up electricity usage will increase too.

As implementation of the graphs our team decided to use column-bar charts for the monthly data representation (see picture on the right in figure 6) and for the hourly data updates we will be using point plot area charts (see picture on the left in figure 6). Bar chart are used to represent categorical data is a grouping of data into discrete groups, in our case months of the year. Area charts are used to represent cumulated totals using numbers or percentages (stacked area charts in this case) over time. Use the area chart for showing trends over time among related attributes. The area chart is like the plot chart except that the area below the plotted line is filled in with color to indicate volume. To represent the graphs we used source free libraries, such as Jqplot for the web implementation of the project and Google graphs libraries for Android application.

Figure 3.1 Proposed charts.

3.4 Notifications

Screensaver functionality for displays located in Engineering & Industry Building is one of the main requirements proposed by the dean of UAA School of Engineering. This implies not only representing information from the graphs, but also displaying information about recent events, achievements, UAA news, etc. Since the information in notifications will be changed frequently, after deploying the EOD application dean or other responsible personnel need the ability to change this information. The two proposed solutions are to store database of the notification on the server or to create administrative interface which will give the dean an ability to change arrangement of the visual elements and text. The administrative interface is better approach in terms of the client requirements; however, it is more challenging to implement.
3.5 Indoor Navigation

Indoor navigation feature will be available for EOD Android application users. We decided not to implement indoor navigation on the webpage due to limited access to the wifi connections information. EOD indoor navigation is going to be hybrid of two systems which are GPS and Wifi. GPS logic will be applied to see if the device in the range of building and to locate the wifi sources; whereas wifi triangulation logic will be implemented to locate device determine position of wifi transmitters inside the building. We also consider wifi fingerprinting technique to determine position within one floor level.

3.5.1 Android API

API for Android developing provide WifiManager and BroadcastReceiver classes, it provides the primary API to retrieve the results of access point scans, containing enough information to determine location of the wifi sources and it defines the names of various Intent actions that are broadcast upon any sort of change in Wi-Fi state. In particular, the EOD application will be retrieving IP addresses and transmitted frequency. Below is the snipped of the code to represent WifiManager and BroadcastReceiver initialization and basic usage:

```java
WifiManager wmManager
BroadcastReceiver receiver;
//prepare wifimanager
wmManager = (WifiManager) getSystemService(Context.WIFI_SERVICE);
wmManager.startScan();
//start
if (receiver == null)
    receiver = new BroadcastReceiver() {
        public void onReceive(Context context, Intent intent) {
            results = wmManager.getScanResults();
            System.out.println("here");
```
for (int i=0;i<results.size();i++)
{
 seewifiinfo.append(results.get(i).toString());
}
}

registerReceiver(receiver, new IntentFilter(
WifiManager_SCAN_RESULTS_AVAILABLE_ACTION));

3.5.2 Trilateration

Trilateration is the process of determining absolute or relative locations of points by measurement of distances, using the geometry of circles, spheres or triangles. GPS navigation systems uses trilateration. To find the position of the device start with the equations for the three spheres; therefore in order to locate the device our navigation system will require at least three wifi source points, those point will be derived from IP addresses of available wifi connections.

\[
\begin{align*}
 r_1^2 &= x^2 + y^2 + z^2 \\
 r_2^2 &= (x - d)^2 + y^2 + z^2 \\
 r_3^2 &= (x - i)^2 + (y - j)^2 + z^2
\end{align*}
\]

Solving the system of equations for \(x \) and \(y \) and find the \(z \)-coordinate.

\[
z = \pm \sqrt{r_1^2 - x^2 - y^2}.
\]

The solution to all three points \(x \), \(y \) and \(z \) is found will determine the device location.

![Figure 3.3. GPS trilateration.](image)
Wifi navigation system will use triangulation. Triangulation is the process of determining the location of a point by measuring angles to it from known points at either end of a fixed baseline, rather than measuring distances to the point directly (trilateration). 1.2.4 to be continued…

3.5.3 Wifi Fingerprinting

The localization, relative positioning, technique is based on measuring the intensity of the received signal (RSS) and the method of “fingerprinting”. WifiManager API provides required information for wifi fingerprinting methods, such as SSID and the MAC address of the access point. The accuracy of this method depends on the number of units in the database, which contains IP location data and MAC addresses. General approach for implementation wifi Fingerprinting algorithms is the following:

1. Prepare the Data
 a. Split the location into greed points
 b. Collect the signal strength from each greed related to all the access points reachable from the greed.
 c. Push the data into database.
2. Locate the position of a person each time do the following:
 a. Determine the received signal strength from different access points.
 b. Find best match for signal strength in database and the current signal strength.

Solmon Chan and Gunhi Sohn, in their article “indoor localization using wi-fi based fingerprinting and trilateration techiques for lbs applications” noted that distance between device and access point requires computation of signal path loss (SPL):

\[
\text{SPL} = \text{path loss for 1m away} + 10\log((\text{distance between sender and receiver})^{\text{path loss exponent in environment}}) + \text{standard deviation of signal strength variability.}
\]

3.5.4 Triangulation

Similarly to trilateration, triangulation also uses three reference points and uses triangle lengths to determine the location of the unknown point. Those points form a triangle, length of one side of a triangle is equal to:

\[
\ell = \frac{d}{\tan \alpha} + \frac{d}{\tan \beta}
\]

Using \(\tan \alpha = \sin \alpha / \cos \alpha \) and \(\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \), derive the following:

\[
\ell = d \left(\frac{\cos \alpha}{\sin \alpha} + \frac{\cos \beta}{\sin \beta} \right)
\]

\[
\ell = d \frac{\sin(\alpha + \beta)}{\sin \alpha \sin \beta}
\]

Therefore, the distance is:

\[
d = \ell \frac{\sin \alpha \sin \beta}{\sin(\alpha + \beta)}
\]

Figure 3.4 Triangulation scheme.
From this, determine the distance of the unknown point from observation point, its north/south and east/west offsets from the observation point, and finally its full coordinates. Even though this method will allow to determine floor level; however it is hard to apply it for wifi positioning system since it is almost impossible derive the angles from wifi data; therefore, it will require modification of software.

3.6 Testing

For testing we used mainly used black-box testing. We did this by pushing test values into the MySQL database and making sure the data is uploaded into Webpage and Android application. For database insertions information was inputted then pulled up with the SQL tools from the Netbeans IDE to verify the integrity of the graphs. We did white-box testing to debug our code; especially convenient in debugging the SQL queries that were being executed in our code. A good amount of testing went to the validation of the graph data with the auto-formatting according to required graphs. Null values are handled by the front-end as well, but the database also has specified which values can and can’t be null. Finally, we did proofreading of the EOD application and checked image resizing on different screens.

While developing this project we used agile methodology principles; meaning testing was done concurrently with coding, and we perform testing on each stage. We frequently use validated code pieces of software to validate the value of new code. We were continuously reviewing our code and changing it.

![Agile Methodology Iteration Cycle](image)

Figure 3.5 Agile methodology iteration cycle.
Chapter 4

Results and Discussion

4.1 Introduction

The purpose of the Engineering on Display (EOD) project is to present relevant information about the UAA Engineering and Industry building in an easy to understand graphical representation. The EOD application will display the information on the big size screens of the Engineering & Industry Building at the UAA. The EOD application presents near real time data which will allow ongoing monitoring of the systems. The purpose of the application is to distribute the information to the large auditory. The utility information will assist students and researchers in monitoring processes, operations and performing experimental engineering analysis. The EOD application is implemented in two forms: an Android application and Webpage. The main focus of the application is to properly display data graphs about the building power, heat, and water consumption. The application will also provide information to the students about events that may be happening within the department or campus. The EOD application maybe expanded to be used for any other building on campus simply by adding necessary information applied to desired building. This chapter describes the results of the project and discuss how are they accomplished and how the results may be improved. Even though our team accomplished main tasks this project is work in progress and this chapter will discuss what was done and what needs to be done.

4.2 Back End

On the back end EOD system has server which process incoming data and stores it into database. However, our team faced hardship of getting access to the server and it significantly slowed down development process. Therefore, to avoid delay in project and progress with development on the front end I created simulation of the MySQL database on my local machine and used it for the development and testing purposes. This database has one-to-many relationships where a parent table is “Buildings”. This design was created in case the system will
be expanded to different UAA buildings, not just to the new Engineering Building. Currently, we
decided to concentrate on four types of data for the building: water usage, gas consumption,
electricity usage, and temperature. To pull the data from the database to EOD application, it uses
several PHP pages which contain MySQL queries according and are stored separately for each
data type. One recommended expansion for the database would be to create a table for the rooms
in each building. For each room, there could be an instructor, or class linked to a timeslot in that
room. From here the programmer could add in function for instructors to have office hours,
rooms, numbers, or anything else. The database is accessible in the webpage and android
application through the use of PHP. This allows the same information to be shared across many
different types of media. The figure 4.1 outlines the database structure which will be stored on
the server and from which EOD application will collect the data; meanwhile, this database was
simulated on my local host. The following is a sample of the PHP command to pull the data from
database:

```php
function show_records($dbc) {
    $q = 'Select * from WaterUsage';
    $r = mysqli_query($dbc, $q);
    if ($r) {
        while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {
            echo $row['idBuildings'] . $row['Used'] . $row['Units'] . $row['Date/Time'];
        }
    } else {
        echo mysqli_error($dbc);
    }
}
```

Figure 4.1 EOD database outline.
4.3 Graphs and Plots

Graphs and plots are one of the most important components of the EOD application. As can be seen in figure 4.1, our team has decided to use area charts and bar graphs to represent the data in this project. We used bar charts to represent categorical data to group together discrete data of the units measured versus the time of interval. For the hourly data updates we used a point plot area chart (as can be seen in figure 4.1). We used an area chart to represent trends over a time among utilities. This chart type is the best approach to represent data that is updated hourly. To create graphs, we used Google graphs libraries (within the Android application) and source free libraries (such as Jqplot) for the web implementation of the project. Both Android application and webpage are consistent in graphs. Jqplot was used to implement two graph types for the webpage. Jqplot uses Jquery and cascade styling sheets. Therefore, depending on the data the graph represents, jqplot enabled me to change some attributes, such as color of the bar, background, units for the data, title of the graph, axis distribution, etc. Another feature which was implemented is tooltip. It is a visual pointer to the selected data point which shows the amount of selected unit. For more effective visual representation of the data, we changed the colors of the graphs depending on what type of data it represents.

Figure 4.2. Bar charts which showed data variation by month.
Figure 4.3. Area charts which showed bi-hourly data changes.

4.4 Notifications

Screensaver functionality for displays located in Engineering & Industry Building is one of the main requirements proposed by the dean of UAA School of Engineering. This implies not only representing information from the graphs, but also displaying information about recent events, achievements, UAA news, etc. For the simplicity of the project our team decided to implement notifications and advertisements in a form of image file. This implies that College of Engineering personnel will be able to create it themselves, all they would need to do is to store the message in image format and upload it to the server. Both Android application and webpage perform automatic switch of the images after every minute and have navigation features to let the user switch between the notifications in the manner he wants. For the development this system on the webpage I used Bootstrap library which was design specifically for the purpose of creating image slideshow on the webpages. To be specific I used carousel model which enabled the application look professional without slowing down running time. The figure 4.4 is a screenshot of the EOD notification sample with navigation elements.
4.5 Navigation

Indoor navigation feature is not well implemented and it is under development stage. Currently it pulls the data from the surrounding wifi signals but has no functions to process it. Therefore, it will not be presented at the current stage. Instead, the webpage has an indoor navigation feature; it uses Google Maps API to display the location of the building. The map shows the route from the user’s current location to the engineering building. This feature was implemented using Google maps API for JavaScript. This feature will enable the clients to find the building from anywhere on Earth. This will make it much easier for anyone to find the building.
Chapter 5

Summary and Conclusion

5.1 Introduction

The EOD application displays the information on the big size screens of the Engineering & Industry Building at the UAA. This chapter describes the results of the project and discuss how are they accomplished and how the results may be improved. Even though our team accomplished main tasks, this project is work in progress and this chapter will discuss what was done and what needs to be done.

5.2 Implications

All of the main features were successfully implemented and deployed. On the back end EOD system has server which process incoming data and stores it into database. The database on the back end was implemented using MySQL, and data was retrieved and processed using PHP. Front end of the EOD application was successful implemented in two forms Android application and webpage. Front end implementation contains graphs and charts with utility data for the building which is pulled from the database on the back end. The graphs on the webpage load data asynchronously, which prevent page from “freezing” in case of interruptions with database communication.

One of the main requirements proposed by the dean of UAA School of Engineering is the screensaver functionality for the displays located in Engineering & Industry Building. This doesn’t just display the graph information but also displays information about recent events, achievements, UAA news, etc. Notifications and Achievements section of the application in Android was implemented in a form of a screensaver where images contain important information and it is evoked when application is not active; on the webpage part it is implemented in a form of a slideshow updating an image every other minute. For the simplicity of the project, our team decided to implement notifications and advertisements as an image file. All they would need to do is store the message as an image file and upload it to the server. The Android application and webpage perform an automatic switch of the images after every minute. This makes it easier for staff in the College of Engineering to be able to create it themselves.

Navigation section of the application uses Google APIs and shows the path between current location of the user and Engineering & Industry Building. The EOD project was successfully implemented using various tools and this project involves different aspects of the
development process; which enabled our team for the professional growth and provided perfect learning environment.

5.3 Recommendations for Future Development

Even though all features of the EOD application was successfully implemented most of them need an improvement. Due to the short timeline of the project we concentrated on implementing required features in simple form. We are planning on improving graphical design and layouts of the application to make it more aesthetically pleasing. Since we haven’t been provided with information and images for the application, currently, we are using mock pictures and text; and this may be easily changed once we receive required information. Also currently, the navigation section of the application shows navigation to the building, but not within it, and this is the next step which we are going to implement.

Currently this application is limited to the Engineering & Industry Building; however, on a large scale it may be expanded by applying it to all of the buildings on UAA main campus, or maybe even to the all of the buildings in UA system.

5.4 Summary

The EOD application presents near real time data which will allow ongoing monitoring of the systems. The purpose of the application is to distribute the information to the large auditory. The information about utilities will allow students and researchers monitoring of processes and operations and perform experimental engineering analysis. In addition, this information about resource usage of the building will motivate users to save electricity, water, heat usage to improve the environment. Each piece of this project works together. The front end displays all the information that is kept within the backend. The display of the engineering building statistics is a fun and interactive way for anyone to learn. The EOD application maybe expanded to be used for any other building on campus simply by adding necessary information applied to desired building. This application was successfully implemented and timely submitted to the client. What may seem like a simple concept turned out to be a team effort. It is within this team effort we were able to complete this project. Many different tools, systems, and codes also had to come together to make this work. Our team and our supervisor fulfilled all of the requirements for EOD project and the resulting application is serving its purpose.
Figure 5.1. The EOD application running on multiple platforms.
References

Chan S., Sohn G., (2012) "Indoor Localization Using Wi-Fi Based Fingerprinting And Trilateration Techniques for Lbs Applications” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/C26 Retrieved from:
Gold-Bernstein, Beth; Ruh, William A (2005), Enterprise integration: the essential guide to integration solutions, Addison Wesley
Montague, B., 2012. "Why you Should Use a BSD style License for your Open Source Project". Retrieved from:
http://en.wikipedia.org/wiki/BSD_licenses#Proprietary_software_licenses_compatibility
Vasiliauskas, V. (2014). "Developing agile project task and team management practices". Eylean.
Appendix B – Source Code For Android Application

Repository: https://github.com/ravvytheprogrammer/EOD

MainActivity.java

/*
 * Copyright 1994-2004. EOD Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE EOD PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE EOD PROJECT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the EOD Project.
 */

package eod.uaa.eod;

import android.app.Activity;
import android.os.Bundle;
/**
 * MainActivity class that loads MainFragment
 */

public class MainActivity extends Activity {
 /**
 * Called when the activity is first created.
 */

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

Index.aspx

<!DOCTYPE html>
<!--
Copyright 1994-2004. EOD Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE EOD PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE EOD PROJECT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the EOD Project.
*/

<html lang="en">
<head runat="server">
 <meta charset="UTF-8" />
 <title>Engineering on Display</title>
 <!-- Latest compiled and minified CSS
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <meta name="viewport" content="initial-scale=1.0, user-scalable=no">-->
 <link rel="stylesheet" type="text/css" href="dist/graph.css" />
 <link rel="stylesheet" href="App_Theme/styling.css" />
 <script type="text/javascript" src="dist/jquery.js"/>
 <script type="text/javascript" src="dist/jquery.jqplot.js"></script>
 <script type="text/javascript" src="dist/plugins/jqplot.pieRenderer.js"></script>
 <script type="text/javascript" src="dist/plugins/jqplot.categoryAxisRenderer.js"></script>
 <script type="text/javascript" src="dist/plugins/jqplot.pointLabels.js"></script>
 <script type="text/javascript" src="dist/plugins/jqplot.highlighter.min.js"></script>
 <script type="text/javascript" src="dist/plugins/jqplot.canvasTextRenderer.min.js"></script>
 <script type="text/javascript" src="dist/plugins/jqplot.canvasAxisTickRenderer.min.js"></script>
 <script type="text/javascript" src="dist/plugins/jqplot.canvasAxisLabelRenderer.min.js"></script>
 <script type="text/javascript" src="dist/plugins/jqplot.barRenderer.js"></script>
 <script src="eod.js"></script>
 <link rel="icon" href="../../favicon.ico"/>
</head>
<body>
 <header>
 <p id='title'>University of Alaska Anchorage: Engineering on Display</p>
 </header>
</body>
<div id="content">

<div id="cont">
 <div id="container1">
 <div class="slider">
 <div class="slide-viewer">
 <div class="slide-group">
 <div class="slide slide-1">

 </div>
 <div class="slide slide-2">

 </div>
 <div class="slide slide-3">

 </div>
 <div class="slide slide-4">

 </div>
 <div class="slide slide-5">

 </div>
 <div class="slide slide-6">

 </div>
 </div>
 <div class="slide-buttons"></div>
 </div>
 <script src="slider.js"></script>
 <!--<div id="myCarousel" class="carousel slide" data-ride="carousel">
 Indicators

 Previous

 </div>-->
 </div>
 </div>
</div>
</div>

Next

</div>-->

</div>

<!-- begin html container for tabs and content -->
<div id="container2">
<div id="tabs" class="tabs">
<ul class="digiTabs">
<li id="1" class="selected t">Electricity usage
<li id="2" class="t">Water usage
<li id="3" class="t">Outside temperature
<li id="4" class="t">Gas Usage
<li id="5" class="t">Find Us
<li id="6" class="t">History

<!-- TAB 1 -->
<div id="tabs-1" class="tabContent">
<p>Electricity Graph.</p>
<div class="charts" id="chart1" title="Electricity Graph" style="height:90%;width:99%"></div>
</div>

<!-- end tab 1 content -->

<!-- TAB 2 -->
<div id="tabs-2" class="tabContent">
<p>Water usage graph.</p>
<div class="charts" id="chart2" title="Water Graph" style="height:90%;width:99%"></div>
</div>

<!-- end tab 2 content -->

<!-- TAB 3 -->
<div id="tabs-3" class="tabContent">
<p>Temperature Graph.</p>
</div>
<div class="charts" id="chart3" title="Temperature Graph" style="height:90%;width:99%"></div>
</div>
<!-- end tab 3 content -->
<div id="tabs-4" class="tabContent">
<p>Gas Graph.</p>
<div class="charts" id="chart4" title="Gas Graph" style="height:90%;width:99%"></div>
</div>
<div id="tabs-5" class="tabContent">
<p>Address</p>
<div id="map-canvas" title="Map" style="height:90%;"></div>
<div class="charts" id="chart5" style="display:none"></div>
</div>
<div id="tabs-6" class="tabContent">
<div class="charts" id="chart6" style="height:90%;width:99%;">
<h2>UAA Engineering & Industry Building</h2>
<p id="hist">A new 81,500 sf facility will house engineering laboratory and teaching areas not currently available on campus. The project includes: communication labs, electrical engineering labs, fluid labs, heat and mass transfer labs, foundation engineering, transportation and highway engineering, land surveying, machine shop, wood shop, service yard, and conferencing/collaborative learning areas.

A/E: Livingston Slone, Inc.

CMAR: Neeser Construction, Inc.

</p>
</div>
</div>
</div>
<!-- end div class tabContainer -->
</div>
<footer>
<small><i>Copyright © UAA

ngalimzyanova@alaska.edu
</i></small>
</footer>
</i></small>
</footer>
</body>
</html>

Styling.css

html{
 height: 100%;
 min-width: 780px;
}

body {
 font-family: Arial, Helvetica, sans-serif;
 margin: 0;
 padding: 0px;
 position: relative;
 min-height: 100%;
}

body header{
 background-color: #196950;
 color: #fec425;
 position: absolute;
 width: 100%;
 height: 80px;
}

body header #title{
 padding: 0px;
 padding-top: 0px;
 margin: 0px;
 font-family: cursive;
 text-align: center;
 font-size: 30px;
}

body footer{
 position: absolute;
 width: 100%;
 height: 50px;
 bottom: 0;
 margin: 0px;
 background-color: #196950;
 color: #fec425;
}

body #content{
 padding: 0px;
 margin: 0px;
 position: absolute;
{
 position: relative;
 top: -80px;
 left: 10px;
 height: inherit;
 width: inherit;
}
.selectedTab
{
 background-color: white;
 border-bottom: solid 1px white;
 border-radius: 15px;
}
/*tabs*/
.tabs {
 width: inherit;
}
.tabs .digiTabs {
 list-style: none;
 display: block;
 overflow: hidden;
 margin: 0;
 padding: 0px;
 position: relative;
 top: 1px;
}
.tabs .digiTabs li {
 float: left;
 padding: 5px 15px!important;
 cursor: pointer;
 border-bottom: none;
 margin-right: 1px;
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
 font-size: 14px;
 border: solid 1px black;
 background-color: #196950;
 color: #fec425;
 padding: 5px 10px;
}
.tabs .digiTabs .selected {
 background-color: #fec425;
 color: #196950;
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
 border-left: 1px solid #000;
 border-top: 1px solid #000;
 border-right: 1px solid #000;
}
.tabContent {
 border: solid 1px black;
 padding: 10px;
 background-color: rgba(0,0,0,0.7);
 border-radius: 15px;
 border-top-left-radius: 0px;
 color: #fec425;
 width: 100%;
 height: inherit;
} #tabs-1{
 display:block;}
#tabs-2,#tabs-3,#tabs-4,#tabs-5,#tabs-6{
 display:none;}
}
img{
 height:300px;
 width:auto;
 float: right;
}
#hist{
}
#map-canvas{
 border-radius: 15px;
}
/********** SLIDER **********
max-width: 940px;
*/
.slider {
 margin: 0 auto 30px auto;
 height:inherit;
 width:inherit;
}
.slide-viewer {
 position: relative; /* needed for IE7 */
 overflow: hidden;
 //height: 500px;
 //width:500px;
 height:inherit;
}

}
.slide-group {
 width: 100%;
 height: 100%;
 position: relative;
}
.slide {
 width: 100%;
 height: 100%;
 display: none;
 position: absolute;
}
.slide:first-child {
 display: block;
}
.slider img{
 height:100%;
 width: 100%;
 min-height:100%;
 min-width: 100%;
}
/********** BUTTONS **********/
Eod.js

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
var plot1;
var ch1;
//resize chart when window resizes
$(window).resize(function () {
 plot1.replot({ resetAxes: true });
});

//activated on active tab changed
function tabsAction() {
 var mydata = [];

 var myClasses = document.getElementsByClassName("selected t");
 //pull array of data from database
 // s1 = getGraphData();
 // s1 = myWaterArr;

 //clean tabb content: remove old charts and div data
 for (var i = 0; i < myClasses.length; i++) {
 var id = myClasses[i].getAttribute("id");
 myClasses[i].className = "t";
 var idtab = "tabs-" + id;
 document.getElementById(idtab).style.display = "none";
 var chid = 'chart' + id.toString();
// assign active tab
this.className = "selected t";
var id = this.getAttribute("id");
var idtab = "tabs-" + id;
// prepare content of the tabs according to activated tab
// initialize and display chart, replot to adjust resizing
if (idtab !== "tabs-5" && idtab !== "tabs-6") {
 document.getElementById("tabs-6").style.display = "none";
 document.getElementById("tabs-5").style.display = "none";
 // document.getElementById("map-canvas").style.display = "block";
 document.getElementById(idtab).style.display = "block";
 var chid = 'chart' + id.toString();
 var title = document.getElementById(chid).title;
 var filename = '';
 if (id == 1) {
 filename = 'queries/ElectricityUsage.php';
 mydata = [7596, 7887.8, 7744.7, 7318.8, 7263.3, 7779.1, 7921.4, 7747.8, 7650.9, 7684.2, 7439.7, 7257.9, 7713.6, 5948.1, 0, 7393.0, 7082.6, 7178.9, 7581.4, 7599.8, 7501.1, 7476.0, 7536.5, 7159.4, 7141.3, 7141.3];
 } else if (id == 2) {
 mydata = [4773, 4695, 5647, 2865, 4208, 4048, 4311, 4098, 2611, 2251, 4165, 1262, 0, 0, 896, 2263, 2749, 3991, 4064, 3834, 3875, 4006, 2624, 2423];
 filename = 'queries/WaterUsage.php';
 } else if (id == 3) {
 filename = 'queries/OutsideTemperature.php';
 mydata = [38, 40, 40.5, 34.5, 36.5, 41.0, 42.5, 37.0, 38.0, 42.0, 37.5, 37.5, 34.5, 32.0, 41.0, 40.5, 42.0, 44.5, 45.5, 37.0, 40.0, 39.5, 38.5, 40.5, 43.0, 47.0];
 } else if (id == 4) {
 filename = 'queries/GasConsumption.php';
 mydata = [63786, 72134, 73667, 71013, 81663, 65626, 38419, 41251, 34825, 34911, 47882, 47259, 43357, 22972, 0, 0, 9097, 31011, 22479, 32676, 43711, 41873, 37342, 28893, 30372, 28488];
 } else {
 filename = 'queries/eod.php';
 }

 /* $.get(filename, function (result)
 { // parse the results
 result = result.substring(1, result.length - 1);
 result = result.split(",").join(",");
 // convert to integer
 for (var i = 0; i < result.length; i++) {
 mydata[i] = Number(result[i]);
 }
 ch1 = new myGraph(mydata, chid, title, idtab);
 }); */
 document.getElementById(chid).style.display = "block";
 plot1.replot({resetAxes: true});/*
```javascript
ch1 = new myGraph(mydata, chid, title, idtab);
document.getElementById(chid).style.display = "block";
plot1.replot({ resetAxes: true });

// displays map
else if (idtab === "tabs-6") {
document.getElementById('tabs-6').style.display = "block";
document.getElementById("chart6").style.display = "block";
}
else if (idtab === "tabs-5") {
document.getElementById('tabs-5').style.display = "block";
var lat;
var lng;
if (navigator.geolocation) {
    window.navigator.geolocation.getCurrentPosition(
      function (position) {
        // succes handling
        lat = position.coords.latitude;
        lng = position.coords.longitude;
        mapManipulation(lat, lng, idtab);
      },
      function errorCallback(error) {
        // error handling
        lat = 61.188753;
        lng = -149.826814;
        showbuilding(lat, lng, idtab);
      },
      {
        maximumAge: Infinity,
        timeout: 5000
      }
    );
}
}

// if user location is not enabled
function showbuilding(lat, lng, idtabin) {
    document.getElementById("map-canvas").style.display = "block";
document.getElementById(idtabin).style.display = "block";
    // get current position
    // var location = new google.maps.LatLng(61.1895867, -149.8310051);
    var location = new google.maps.LatLng(lat, lng);
    // declare map parameters
    var mapOptions =
    {
        center: location,
        mapTypeId: google.maps.MapTypeId.ROADMAP,
        mapTypeControl: true,
        streetViewControl: true,
        zoomControl: true,
        overviewMapControl: true,
        panControl: true,
        panControlOptions: {
```
var venueMap = new google.maps.Map(document.getElementById('map-canvas'),
 mapOptions);

//for pin
var startPosition = new google.maps.Marker({
 position: location,
 map: venueMap,
 icon: "images/go.png"
});
google.maps.event.trigger(rootMap, 'resize');

//shows direction
function mapManipulation(lat, lng, idtabin) {
 // document.getElementById("map-canvas").style.visibility="visible";
 document.getElementById("map-canvas").style.display = "block";
 // document.getElementById(idtabin).style.display = "block";
 //get current position
 var location = new google.maps.LatLng(lat, lng);
 var dest = new google.maps.LatLng(61.188753, -149.826814);
 var directionsService = new google.maps.DirectionsService();
 var directionsDisplay = new google.maps.DirectionsRenderer();

 var request = {
 origin: location,
 destination: dest,
 travelMode: google.maps.TravelMode.DRIVING
 };
 var mapOptions = {
 zoom: 13,
 center: location,
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 mapTypeControl: true,
 streetViewControl: true,
 zoomControl: true,
 overviewMapControl: true,
 panControl: true
 };

 directionsService.route(request, function (response, status) {
 if (status == google.maps.DirectionsStatus.OK) {
 directionsDisplay.setDirections(response);
 }
 });
 var map = new google.maps.Map(document.getElementById('map-canvas'), mapOptions);
 directionsDisplay.setMap(map);
 google.maps.event.trigger(map, 'resize');
 //google.maps.event.addListener(window, 'load', initialize);
function myGraph2(s1, name, title, idtab) {
 var col = '';
 var Xaxis = '';
 var Yaxis = '';

 if (title === 'Electricity Graph') {
 col = '#73C774';
 Xaxis = 'Time Period';
 Yaxis = 'Amount';
 } else if (title === 'Water Graph') {
 col = '#2C75FF';
 Xaxis = 'Time Period';
 Yaxis = 'Amount';
 } else if (title === 'Gas Graph') {
 col = '#FF00FF';
 Xaxis = 'Time Period';
 Yaxis = 'Amount';
 } else if (title === 'Temperature Graph') {
 col = '#FF3300';
 Xaxis = 'Time Period';
 Yaxis = 'Amount';
 } else {
 col = '#C7754C';
 Xaxis = 'Time Period';
 Yaxis = 'Amount';
 }

 $.jqplot.config.enablePlugins = true;
 plot1 = $.jqplot(name, [s1], {/
 // The "seriesDefaults" option is an options object that will
 // be applied to all series in the chart.
 title: {
 text: title,
 textColor: col
 },
 seriesColors: [col], // '#00749F', '#73C774', '#C7754C', '#17BDB8'],
 seriesDefaults: {
 renderer: $.jqplot.BarRenderer,
 rendererOptions: {
 fillToZero: true,
 textColor: col
 }
 },
 // Custom labels for the series are specified with the "label"
 // option on the series option. Here a series option object
 // is specified for each series.
 /* series: [
 {label: 'Amount'}
],*/
);
}
Show the legend and put it outside the grid, but inside the plot container, shrinking the grid to accommodate the legend. A value of "outside" would not shrink the grid and allow the legend to overflow the container.

legend: {
 show: true,
 placement: 'outsideGrid'
},

axes: {
 // Use a category axis on the x axis and use our custom ticks.
 xaxis: {
 renderer: $.jqplot.CategoryAxisRenderer,
 ticks: ticks,
 label: Xaxis,
 labelRenderer: $.jqplot.CanvasAxisLabelRenderer,
 tickOptions: { textColor: col },
 labelOptions: { textColor: col }
 },
 // Pad the y axis just a little so bars can get close to, but not touch, the grid boundaries. 1.2 is the default padding.
 yaxis: {
 labelRenderer: $.jqplot.CanvasAxisLabelRenderer,
 label: Yaxis,
 pad: 1.05,
 tickOptions: { formatString: '%d', textColor: col },
 labelOptions: { textColor: col }
 }
};

//chart resize on changes
$(idtab).bind('resizestop', function (event, ui) {
 $('.#chart1').height($(idtab).height() * 0.96);
 $('.#chart1').width($(idtab).width() * 0.96);
 plot1.replot({ resetAxes: true });
});

return plot1;

var miny = 0;

//area chart initialization
function myGraph(s1, name, tittle, idtab) {
 var col = '';
 var Xaxis = '';
 var Yaxis = '';

 if (tittle === 'Electricity Graph') {
 col = '#73C774';
 Xaxis = 'Time Period';
 Yaxis = 'Amount(kW)';
 miny = 6000;
 }
 else if (tittle === 'Water Graph') {
 col = '#2C75FF';
 Xaxis = 'Time Period';
 Yaxis = 'Amount(Gallon)';
 miny = 0;
 }
```javascript
else if (tittle === 'Gas Graph') {
    col = '#FF00FF';
    Xaxis = 'Time Period';
    Yaxis = 'Amount (kBtu)';
    miny = 550;
}
else if (tittle === 'Temperature Graph') {
    col = '#FF3300';
    Xaxis = 'Time Period';
    Yaxis = 'Amount (Fahrenheit)';
    miny = 0;
}
else {
    col = '#C7754C';
    Xaxis = 'Time Period';
    Yaxis = 'Amount';
    miny = 0;
}
// $('#chart1').empty().jqplot(charts[0]);
//alert('here');
//$('#chart1').destroy().jqplot(charts[0]);
var ticks = [[1, '12am'], [2, '2am'], [3, '4am'], [4, '6am'], [5, '8am'], [6, '10am'], [7, '12pm'], [8, '2pm'], [9, '4pm'], [10, '6pm'], [11, '8pm'], [12, '10pm']] ;
plot1 = $.jqplot(name, [s1], {
    // stackSeries: true,
    title: { text: tittle, textColor: col },
    //custom color for the graphs
    seriesColors: [col], // '#00749F',
    seriesColors: [col],
    showMarker: true,
    seriesDefaults: {
        fill: true
    },
    dataPoints: { color: col },
    /*series: [
    {label: 'B'}
    ],
    legend: {
    show: true,
    placement: 'outsideGrid'
    },
    grid: {
    drawBorder: false,
    shadow: false
    },*/
    highlighter: {
    show: true,
    showTooltip: true,
    sizeAdjust: 7.5,
    lineWidthAdjust: 2.5
    },
    cursor: {
```
show: true
},
axes: {
xaxis: {
labelRenderer: $.jqplot.CanvasAxisLabelRenderer,
label: Xaxis,
ticks: ticks,
tickRenderer: $.jqplot.CanvasAxisTickRenderer,
tickOptions: {
textColor: col,
angle: -40,
fontSize: '10pt',
formatString: '%d'
},
labelOptions: { textColor: col },
drawMajorGridlines: true,
pad: 0
},
yaxis: {
labelRenderer: $.jqplot.CanvasAxisLabelRenderer,
label: Yaxis,
pad: 0,
min: miny,
tickOptions: { formatString: '%d', textColor: col },
labelOptions: { textColor: col }
}
}

// chart resize on changes
$(idtab).bind('resizestop', function (event, ui) {
 $('#chart1').height($(idtab).height() * 0.96);
 $('#chart1').width($(idtab).width() * 0.96);
 plot1.replot({ resetAxes: true });
});
return plot1;

// retrieve data from database
/*$.get('eod.php', function (result) {
 // parse the results
 result = result.substring(1, result.length - 1);
 result = result.split('"').join('');
 result = result.split('"');
 // convert to integer
 for (var i = 0; i < result.length; i++) {
 mydata[i] = Number(result[i]);
 }

 // initialize the chart
 var title = document.getElementById('chart1').title;
 ch1 = new myGraph(mydata, 'chart1', title, "tab-1");
 });
// returns array of data for the graph
function getGraphData() {
 return mydata;
var myWaterArr = $.get('eod.php', function (result)
{ //parse the results
result = result.substring(1, result.length - 1);
result = result.split('"').join('"');
result = result.split(",");
//convert to integer
for (var i = 0; i < result.length; i++) {
mydata[i] = Number(result[i]);
}

//initialize the chart
var tittle = document.getElementById('chart1').title;
ch1 = new myGraph(mydata, 'chart1', tittle, "tab-1");
return mydata;
});*/

//window onload for index page
window.onload = function () {
 //initialize event listeners for the tabs
 var myTabs = document.getElementsByClassName("t");
 for (var i = 0; i < myTabs.length; i++) {
 myTabs[i].addEventListener("click", tabsAction);
 }

 mydata = [7596, 7887.8, 7744.7, 7318.8, 7263.3, 7779.1, 7921.4, 7747.8, 7650.9, 7684.2, 7439.7, 7257.9, 7713.6, 5948.1, 0, 7393.0, 7082.6, 7178.9, 7581.4, 7599.8, 7501.1, 7476.0, 7536.5, 7159.4, 7141.3, 7141.3];

 // s1 = [12, 34, 56, 23, 10, 24, 56, 76, 33, 24, 56, 23];
 var tittle = document.getElementById('chart1').title;
 ch1 = new myGraph(mydata, 'chart1', tittle, "tab-1");
};

The code above is core code for the webpage, there are a lot of supplemental files which are not described here, please see attachments for the full code.
Appendix C - Javadoc documentation
com.example.eodnavig

Class MainActivity

- java.lang.Object
 - Activity
 - com.example.eodnavig.MainActivity

- public class **MainActivity**
 extends Activity

- **Constructor Summary**
 - **Constructors**
 Constructor and Description
MainActivity()

- **Method Summary**

 All Methods | Instance Methods | Concrete Methods

<table>
<thead>
<tr>
<th>Modifier and Type</th>
<th>Method and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>void</td>
<td>displayWifiNetworks(WifiManager wifi, ListView listView)</td>
</tr>
<tr>
<td>boolean</td>
<td>onCreateOptionsMenu(Menu menu)</td>
</tr>
<tr>
<td>boolean</td>
<td>onOptionsItemSelected(MenuItem item)</td>
</tr>
<tr>
<td>void</td>
<td>onStop()</td>
</tr>
</tbody>
</table>

- **Methods inherited from class java.lang.Object**

 equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

- **Constructor Detail**

 - **MainActivity**

 public MainActivity()

- **Method Detail**

 - **onStop**

 public void onStop()

 - **onCreateOptionsMenu**

 public boolean onCreateOptionsMenu(Menu menu)

 - **onOptionsItemSelected**

 public boolean onOptionsItemSelected(MenuItem item)

 - **displayWifiNetworks**

 public void displayWifiNetworks(WifiManager wifi, ListView listView)