
1

Introduction to Artificial Intelligence

What is Artificial Intelligence?

• One definition: AI is the study of how to make
computers do things that people generally do
better

• Many approaches and issues, e.g.:

– Philosophy

– Cognitive Science

– Logic and Rules
• Search, Game-Playing

– Neural Networks

– Evolution

2

Philosophical Discussions

• Test for intelligence?

– Turing Test

Interrogator

Honest Human Computer

Philosophical Discussions

• Physical Symbol Hypothesis

– Newell & Simon, 1976

– The thinking mind consists of the manipulation of symbols. That

is, a physical symbol system has the necessary and sufficient

means for general intelligent action.

• If true, then a computer has the necessary means to

implement general intelligent action

– What rights should an intelligent computer have?

• Counter-arguments

– Lack of consciousness

– Lack of self-awareness

3

Cognitive Science

• Approach AI from the human perspective

– Psychology and Cognitive Science

• Example: Sentence Verification Experiment

Semantic Network/Memory

Model

4

Search and Problem Spaces

• Searching a “Problem Space” or “State

Space” for a solution is a common theme in

AI

– relies largely on the computer’s ability to

search, by brute force, a huge number of

possible states

• Example: Water Jug problem

Water Jug State Space Search

5

Classical Game Playing

• Consider a 2 player game like chess

– Can’t use the previous search technique, too

many states

– On average, about 35 moves can be made

– If each player makes 50 moves, the number of

states to search is 35100 which is untractable

Minimax

• Solution: Generate a search tree as far

ahead as is feasible, compute a heuristic

function for each state, and make the move

leading to the best state

• Heuristic function: Computes a number that

guesses how close the state is to winning

6

Minimax/Heuristic Example: Othello

Heuristic: My pieces – His pieces

Neurons in the Brain

• Although heterogeneous, at a low level
the brain is composed of neurons
– A neuron receives input from other neurons

(generally thousands) from its synapses

– Inputs are approximately summed

– When the input exceeds a threshold the neuron
sends an electrical spike that travels that
travels from the body, down the axon, to the
next neuron(s)

7

Example: Hopfield Networks

• Many different types of computer-based
neural networks

• Machine learning

– Given examples, learn the category

• One is a Hopfield network which is a type of
content-addressable memory

– Network stores attractor points that represent
concepts

– Given a fuzzy input the system converges to the
nearest attractor

Standard Binary Hopfield Network

• Recurrent; Every unit is connected to every other unit

• Weights connecting units are symmetrical

– wij = wji

• If the weighted sum of the inputs exceeds a threshold, its

output is 1 otherwise its output is -1

• Units update themselves asynchronously as their inputs

change

B

C

A

D

wADwABwAC

wBC wBD

wCD

8

Hopfield Memories

• Setting the weights:

– A pattern is a setting of on or off for each unit

– Weights are adjusted so they strengthen connections to
other units that are turned on at the same time,
weakened if they are turned off at the same time

• Demo

– http://www.cbu.edu/~pong/ai/hopfield/hopfield
applet.html

Evolution in Computers

• Genetic Algorithms – most widely known

work by John Holland

• Form of machine learning

• Based on Darwinian Evolution

– In a competitive environment, strongest, “most

fit” of a species survive, weak die

– Survivors pass their good genes on to offspring

– Occasional mutation

9

Evolution in Computers

• Same idea in computers

– Population of computer program / solution

treated like the critters above, typically encoded

as a bit string

– Survival Instinct – have computer programs

compete with one another in some

environment, evolve with mutation and sexual

recombination

GA’s for Computer Problems

Population of critters � Population of computer solutions

Surviving in environment � Solving computer problem

Fitness measure in nature � Fitness measure solving computer

problem

Fit individuals life, poor die � Play God and kill computer solutions

that do poorly, keep those that do well.

i.e. “breed” the best solutions typically

Fitness Proportionate Reduction

Pass genes along via mating � Pass genes along through

computer mating

Repeat process, getting more and more fit individuals

in each generation.

Usually represent computer solutions as bit strings.

10

The Simple Genetic Algorithm

1. Generate an initial random population of M
individuals (i.e. programs or solutions)

2. Repeat for N generations

1. Calculate a numeric fitness for each individual

2. Repeat until there are M individuals in the new
population

1. Choose two parents from the current population
probabilistically based on fitness (i.e. those with a higher
fitness are more likely to be selected)

2. Cross them over at random points, i.e. generate children based
on parents (note external copy routine)

3. Mutate with some small probability

4. Put offspring into the new population

Crossover
Typically use bit strings, but could use other structures

Bit Strings: Genotype representing some phenotype

Individual 1: 001010001 Individual 2: 100110110

New child : 100110001 has characteristics of

both parents, hopefully

better than before

Bit string can represent whatever we want for our particular

problem; solution to a complex equation, logic problem,

classification of some data, aesthetic art, music, etc.

11

• 29 Node Traveling Salesperson

Problem

• 29! = 8.8 trillion billion billion

possible asymmetric routes.

• ASCI White, an IBM

supercomputer being used by

Lawrence Livermore National

Labs to model nuclear explosions,

is capable of 12 trillion operations

per second (TeraFLOPS) peak

throughput

• Assuming symmetric routes,

ASCI White would take 11.7

billion years to exhaustively

search the solution space

Example : Traveling Salesman Problem

• A genetic algorithm approach

– Randomly generate a population of solutions

• Each solution represents an entire solution, i.e. a random
ordering of nodes representing a loop

– Given nodes 1-6, we might generate 423651 to represent the
loop of visiting 4 first, then 2, then 3, then 6, then 5, then 1,
then back to 4

– Assign each solution a fitness value

• Fitness is just the sum of the distance for edges in the
loop; lower is more fit

– Evolve a new, hopefully better, generation of the
same number of agents

• Select two parents randomly, but higher probability of
selection if better fitness

• New generation formed by crossover and mutation

12

• Crossover

– Must combine parents in a way that preserves valid
loops

– Typical cross method, but invalid for this problem

Parent 1 = 423651 Parent 2 = 156234

Child 1 = 423234 Child 2 = 156651

– Use a form of order-preserving crossover:

Parent 1 = 423651 Parent 2 = 156234

Child 1 = 123654

• Copy positions over directly from one parent, fill in from
left to right from other parent if not already in the child

• Mutation

– Randomly swap nodes (may or may not be
neighbors)

• Traveling Salesman Applet:

Generates solutions using a genetic algorithm
http://www.generation5.org/jdk/demos/tspApplet.html

• Smart Rockets
– http://www.blprnt.com/smartrockets/

