Computer Architecture and Data Manipulation

Chapter 3

Terminology

- Machine instruction: An instruction (or command) encoded as a bit pattern recognizable by the CPU
- Machine language: The set of all instructions recognized by a machine

Machine Language Philosophies

- Reduced Instruction Set Computing (RISC)
 - Few, simple, efficient, and fast instructions
 - Examples: PowerPC from Apple/IBM/Motorola and SPARC from Sun Microsystems
- Complex Instruction Set Computing (CISC)
 - Many, convenient, and powerful instructions
 - Example: Pentium from Intel

- Data Transfer: copy data from one location to another
- Arithmetic/Logic: use existing bit patterns to compute a new bit patterns
- Control: direct the execution of the program

Example - Adding values stored in memory

- Step 1. Get one of the values to be added from memory and place it in a register.
- Step 2. Get the other value to be added from memory and place it in another register.
- Step 3. Activate the addition circuitry with the registers used in Steps 1 and 2 as inputs and another register designated to hold the result.
- **Step 4.** Store the result in memory.

Step 5. Stop.

Example - Dividing values stored in memory

- **Step 1.** LOAD a register with a value from memory.
- Step 2. LOAD another register with another value from memory.
- Step 3. If this second value is zero, JUMP to Step 6.
- **Step 4.** Divide the contents of the first register by the second register and leave the result in a third register.
- **Step 5.** STORE the contents of the third register in memory.

Step 6. STOP.

The architecture of the machine described in Appendix C						
Central p	Central processing unit			Main memory		
Registers			Address	Cell		
0	Program counter		00			
<u> </u>	Instruction register	Bus	01			
2			02			
:			03			
F F			FF			

Appendix C: A Simple Machine Language

Op-code	Operand	Description
1	RXY	LOAD reg. R from cell XY.
2	RXY	LOAD reg. R with XY.
3	RXY	STORE reg. R at XY.
4	ORS	MOVE R to S.
5	RST	ADD S and T into R. (2's comp.)
6	RST	ADD S and T into R. (floating pt.)
7	RST	OR S and T into R.
8	RST	AND S and T into R.
9	RST	XOR S and T into R.
А	ROX	ROTATE reg. R X times.
В	RXY	JUMP to XY if R = reg. 0.
С	000	HALT.
D	OXY	JUMP to XY always

Sample Machine Program			
• PC = 0			
 Mem Address 	Contents		
0	1506		
1	1607		
2	5056		
3	3008		
4	C000		
5	0001		
6	0002		
7	0003		
8	0000		

Exercise

- Write a program that computes the opposite of the value in memory address FF
 - E.g. if the value is +5 then it becomes -5

Communicating with Other Devices

- **Controller:** An intermediary apparatus that handles communication between the computer and a device
 - Specialized controllers for each type of device
 - General purpose controllers (USB and FireWire)
- **Port:** The point at which a device connects to a computer
- Memory-mapped I/O: CPU communicates with peripheral devices as though they were memory cells

- **Direct memory access (DMA):** Main memory access by a controller over the bus
- Von Neumann Bottleneck: Insufficient bus speed impedes performance
- Handshaking: The process of coordinating the transfer of data between components

Communicating with Other Devices (continued)

- **Parallel Communication:** Several communication paths transfer bits simultaneously.
- Serial Communication: Bits are transferred one after the other over a single communication path.

Data Communication Rates

- Measurement units
 - Bps: Bits per second
 - Kbps: Kilo-bps (1,000 bps)
 - Mbps: Mega-bps (1,000,000 bps)
 - Gbps: Giga-bps (1,000,000,000 bps)
- Bandwidth: Maximum available rate

Increasing Performance

- Technologies to increase throughput:
 - Faster clock speed
 - Bigger word size
 - Larger cache memory
 - Pipelining: Overlap steps of the machine cycle

