
10/19/2009

1

Introduction to Database

Systems

Introduction to Database Systems

• So, what is a database, anyway?

• An integrated, self-describing collection of

data about related sets of things and the

relationships among them

10/19/2009

2

If you burned down all our plants, and we

just kept our people and our information

files, we should soon be as strong as ever.
Thomas Watson, Jr. Former chairman of IBM

Database Management Systems

• Simple text files or office documents are one way
to store data:
– Fine for small amounts of data

– But impractical for large amounts of data

• Businesses must maintain huge amounts of data
– A database management system (DBMS) is the typical

solution to the data needs of business

– Designed to store, retrieve, & manipulate data

• Most programming languages can communicate
with several DBMS
– Tells DBMS what data to retrieve or manipulate

10/19/2009

3

File vs. Database organization

Layered Approach to Using a DBMS

• Applications that work with a DBMS use a layered
approach
– Application is topmost layer

– Application sends instructions to next layer, the DBMS

– DBMS works directly with data

• Programmer need not understand the physical structure
of the data
– Just need to know how to interact with the database

10/19/2009

4

Why not just use the file system?

Day8-21.txt

8,drive to work

9,teach class

10, �

Day8-22.txt

8,drive to work

9,eat donut

10, �
�

Could write programs to operate on this text file data.

File Storage Problems
• Sharing data

• Same data may be duplicated many times

• Need to write custom programs to manipulate the
data (e.g search, print)

• As file systems become more complex, managing
files gets more difficult

• Making changes in existing file structures is
important and difficult.

• Security, data integrity (redundancy, inconsistency,
anomalies) features are difficult to implement and
are lacking.

10/19/2009

5

File Storage Problems - Dependence

• Structural Dependence: A change in the file’s

structure requires the modification of all programs

using that file.

• Data Dependence: A change in any file’s data

characteristics requires changes of all data access

programs.

Solution: DBMS

• Logically related data are stored in a single data
repository.

• The database represents a change in the way end
user data are stored, accessed, and managed
efficiently.

• Easier to eliminate most of the file system’s data
inconsistency, data anomalies, and data structural
dependency problems.

• Store data structures and relationships (schema)

• DBMS takes care of defining all the required access
paths.

10/19/2009

6

Disadvantages of DBMS

• Cost of software and implementation

• Higher cost of processing routine batches

• Increase magnitude of potential disaster

• Lack of database technical capability

Relational Database Model

• Introduced in the 60’s and 70’s and is the most

common type of DBMS today

• Data elements stored in simple tables (related)

• General structure good for many problems

• Easy to understand, modify, maintain

Examples: MySQL, Access, Oracle, SQL Server

• We will focus on relational databases using Microsoft

Access in our course

10/19/2009

7

The Relational Model

• Views entities as two-dimensional tables

– Records are rows

– Attributes (fields) are columns

• Tables can be linked

• Supports one-to-many, many-to-many, and

one-to-one relationships

Terminology

• Database: a collection of interrelated tables

• Table: a logical grouping of related data

– A category of people, places, or things

– For example, employees or departments

– Organized into rows and columns

• Field: an individual piece of data pertaining to
an item, an employee name for instance

• Record: the complete data about a single item
such as all information about an employee

– A record is a row of a table

10/19/2009

8

Emp_Id First_Name Last_Name Department

001234 Ignacio Fleta Accounting

002000 Christian Martin Computer Support

002122 Orville Gibson Human Resources

003400 Ben Smith Accounting

003780 Allison Chong Computer Support

Database Table

Row

(Record)

Column Field

• Each table has a primary key
– Uniquely identifies that row of the table
– Emp_Id is the primary key in this example
– Serves as an index to quickly retrieve the record

• Columns are also called fields or attributes
• Each column has a particular data type

Choosing Column Names

• Define a column for each piece of data

• Allow plenty of space for text fields

• Avoid using spaces in column names

• For the members of an organization:

Column Name Type Remarks

Member_ID int Primary key

First_Name varchar(40)

Last_Name varchar(40)

Phone varchar(30)

Email varchar(50)

Date_Joined smalldatetime Date only, no time values

Meeings_Attended smallint

Officer Yes/No True/False values

10/19/2009

9

• Database design minimizes redundant data

• In the following employee table:
ID First_Name Last_Name Department

001234 Ignacio Fleta Accounting

002000 Christian Martin Computer Support

002122 Orville Gibson Human Resources

00300 Jose Ramirez Research & Devel

003400 Ben Smith Accounting

003780 Allison Chong Computer Support

• Same dept name appears multiple times
– Requires additional storage space

– Causes problems if misspelled

– What if a department needs to be renamed?

Issues with Redundant Data

• Create a department table

Dept_ID Dept_Name Num_Employees

1 Human Resources 10

2 Accounting 5

3 Computer Support 30

4 Research & Development 15

• Reference department table in employee table

ID First_Name Last_Name Dept_ID

001234 Ignacio Fleta 2

002000 Christian Martin 3

002122 Orville Gibson 1

003000 Jose Ramirez 4

003400 Ben Smith 2

003780 Allison Chong 3

Eliminating Redundant Data

10/19/2009

10

• The previous changes created a one-to-many

relationship

– Every employee has one and only one dept

– Every department has many employees

– DeptID in department table is a primary key

– DeptID in employee table is a foreign key

• One-to-many relationship

exists when primary key

of one table is specified

as a field of another table

One-to-Many Relationships

Normalization

• The previous example illustrated a technique

used to make complex databases more

efficient called Normalization

• Break one large table into several smaller

tables

– Eliminates all repeating groups in records

– Eliminates redundant data

• Another example…

10/19/2009

11

Redundant Data

Student
ID#

Student
Name

Campus
Address

Major Phone Course
ID

Course
Title

Instructor
Name

A121 Joy Egbert 100 N. State Street MIS 555-7771 MIS 350 Intro. MIS Van Deventer

A121 Joy Egbert 100 N. State Street MIS 555-7771 MIS 372 Database Hann

A121 Joy Egbert 100 N. State Street MIS 555-7771 MIS 375 Elec. Comm. Chatterjee

A121 Joy Egbert 100 N. State Street MIS 555-7771 MIS 448 Strategic MIS Chatterjee

A121 Joy Egbert 100 N. State Street MIS 555-7771 MIS 474 Telecomm Gilson

A123 Larry Mueller 123 S. State Street MIS 555-1235 MIS 350 Intro. MIS Van Deventer

A123 Larry Mueller 123 S. State Street MIS 555-1235 MIS 372 Database Hann

A123 Larry Mueller 123 S. State Street MIS 555-1235 MIS 375 Elec. Comm. Chatterjee

A123 Larry Mueller 123 S. State Street MIS 555-1235 MIS 448 Strategic MIS Chatterjee

A124 Mike Guon 125 S. Elm MGT 555-2214 MIS 350 Intro. MIS Van Deventer

A124 Mike Guon 125 S. Elm MGT 555-2214 MIS 372 Database Hann

Instructor
Location

T240C

T240F

T240D

T240D

T240E

T240C

T240F

T240D

T240D

T240C

T240F

Instructor
Phone

555-2222

555-2224

555-2228

555-2228

555-2226

555-2222

555-2224

555-2228

555-2228

555-2222

555-2224

Term

F'98

F'98

F'98

F'98

F'98

F'98

F'98

F'98

F'98

F'98

F'98

Grade

A

B

B ++++

A −−−−

C ++++

A

B −−−−

A −−−−

C ++++

A −−−−

A −−−−

A124 Mike Guon 125 S. Elm MGT 555-2214 MIS 375 Elec. Comm. Chatterjee

A124 Mike Guon 125 S. Elm MGT 555-2214 MIS 474 Telecomm Gilson

A126 Jackie Judson 224 S. Sixth Street MKT 555-1245 MIS 350 Intro. MIS Van Deventer

A126 Jackie Judson 224 S. Sixth Street MKT 555-1245 MIS 372 Database Hann

A126 Jackie Judson 224 S. Sixth Street MKT 555-1245 MIS 375 Elec. Comm. Chatterjee

A126 Jackie Judson 224 S. Sixth Street MKT 555-1245 MIS 474 Telecomm Gilson

...

T240D

T240E

T240C

T240F

T240D

T240E

...

555-2228

555-2226

555-2222

555-2224

555-2228

555-2226

...

F'98

F'98

F'98

F'98

F'98

F'98

...

B ++++

B

A

B ++++

B ++++

A −−−−

...

Enrolled Table

Student
ID#

A121

A121

A121

A121

A121

A123

A123

A123

A123

A124

A124

Course
ID

MIS 350

MIS 372

MIS 375

MIS 448

MIS 474

MIS 350

MIS 372

MIS 375

MIS 448

MIS 350

MIS 372

Grade

A

B

B ++++

A −−−−

C ++++

A

B −−−−

A −−−−

C ++++

A −−−−

A −−−−

Term

F'98

F'98

F'98

F'98

F'98

F'98

F'98

F'98

F'98

F'98

F'98

A124

A124

A126

A126

A126

A126

MIS 375

MIS 474

MIS 350

MIS 372

MIS 375

MIS 474

B ++++

B

A

B ++++

B ++++

A −−−−

F'98

F'98

F'98

F'98

F'98

F'98

...

Instructor Table

Instructor
Name

Van Deventer

Hann

Valacich

Chatterjee

Gilson

Instructor
Location

T240C

T240F

T240D

T240D

T240E

Instructor
Phone

555-2222

555-2224

555-2223

555-2228

555-2226

Teaching Assignment

Course
ID

MIS 350

MIS 372

MIS 375

MIS 448

MIS 474

Instructor
Name

Van Deventer

Hann

Chatterjee

Chatterjee

Gilson

Term

F'98

F'98

F'98

F'98

F'98

...

Class Table

Course
ID

Course
Title

MIS 350 Intro. MIS

MIS 372 Database

MIS 375 Elec. Comm.

MIS 448 Strategic MIS

MIS 474 Telecomm

... ...

Normalized Data

Student
ID#

Student Table

Student
Name

Campus
Address

Major Phone

A121 Joy Egbert 100 N. State Street MIS 555-7771

A123 Larry Mueller 123 S. State Street MIS 555-1235

A124 Mike Guon 125 S. Elm MGT 555-2214

A126 Jackie Judson 224 S. Sixth Street MKT 555-1245

...

10/19/2009

12

Exercise

• Your company uses the following spreadsheet.

How might it be normalized into database tables?

Associations

• Relationships among the entities in the data
structures

• Three types

– One-to-one

– One-to-many

– Many-to-many

• Relationships set by placing primary key from one
table as foreign key in another

– Creates “acceptable” redundancy

10/19/2009

13

Association Examples

EMPLOYEE SPOUSEEMPLOYEE SPOUSE

FACULTY ADVISEE

FACULTY COURSE

One-to-one (1:1)

One-to-many (1:M)

Many-to-many (�:M)

Associations

Order (Order #, Order_Date, Customer)

Product(Prod #, Prod_Description, Qty)

Product_Order(Order #, Prod #,Order #, Prod #, Customer)

Foreign key

1

M M

1

10/19/2009

14

Microsoft Access is Unique

• Provides DBMS functions
– Not “industrial-strength”, designed for:

• Individuals

• Small workgroups

– External application programs work with Access

• Provides built-in tools for reporting and for
application development
– Forms

– Reports

– Code modules using Visual Basic for Applications (VBA)

• Provides flexibility
– Small, simple all-in-one environment

– Data can be easily transferred to full-fledged DBMS

Introduction to Access

• Sample databases

– Northwind

• Included with every version of Access since 2.0

• Demonstration of Access

– Startup

– Create tables

– Link table relationships

– Create queries/reports

10/19/2009

15

Access 2007 Example

Student ID Last Name First Name DOB Address

1 Mock Kenrick 4-18-1968 123 Somewhere

Ave

2 Cue Barbie 3-21-1970 567 A Street

3 Obama Barack 8-04-1961 123 Somewhere

Ave

Access 2007 Example

Student ID Grade

1 A

2 B

3 B

CS 101 Table

Student ID Grade

1 B

2 A

3 C

CS 201 Table

10/19/2009

16

SQL

• Structured Query Language, abbreviated SQL

– Usually pronounced “sequel” but also “ess-cue-

ell”)

– The common language of client/server database

management systems.

– Standardized – you can use a common set of SQL

statements with all SQL-compliant systems.

– Defined by E.F. Codd at IBM research in 1970.

– Based on relational algebra and predicate logic

SQL Data Retrieval

• Given an existing database, the SELECT

statement is the basic statement for data

retrieval.

– Both simple and complex, and it may be combined

with other functions for greater flexibility.

SELECT data_element1 [, {data_element2 | function(..)}] Or *

FROM table_1, [, table_2, …]

[WHERE condition_1 [, {not, or, and} condition_2]]

[GROUP BY data_1, …]

[HAVING aggregate function(…)…]

[ORDER BY data1, …]

10/19/2009

17

SELECT statement

• Some sample aggregate functions:
– COUNT(*) SUM(item)

– AVG(item) MAX(item)

– MIN(item)

• Conditional Operators
– = Equal

– < Less than

– > Greater than

– <>,!= Not equal to

– <= Less than or equal to

– >= Greater than or equal to

SELECT Examples

• Select every row, column from the table:
– SELECT * FROM Orders;

– SELECT Orders.cust_id, Orders.prod_id, Orders.cost,

Orders.salesperson

FROM Orders;

• Returns a set of all rows that match the query

10/19/2009

18

SELECT

• If a table has spaces or certain punctuation in

it, then Access needs to have the items

enclosed in square brackets []. The previous

query is identical to the following:

– SELECT [orders].[cust_id], orders.prod_id,

orders.cost, orders.[salesperson]

FROM Orders;

SELECT Query in Access
• Can flip back and forth between SQL View,

Run, and Design Mode

SQL

Run

Design

10/19/2009

19

More SELECT Statements

• Note that we can have duplicates as a result of the selection. If we want
to remove duplicates, we can use the DISTINCT clause:

SELECT DISTINCT Orders.cust_id

FROM Orders;

• We can combine a selection and a projection by using the WHERE clause:

SELECT Orders.cust_id

FROM Orders

WHERE Salesperson = “Jones”;

• This could be used if we wanted to get all the customers that Jones has
sold to, in this case, CUST_ID=101 and CUST_ID=100. By default, Access is
not case-sensitive, so “jones” would also result in the same table.

More SELECT
• We can further refine the query by adding AND , OR, or NOT conditions. If

we want orders from Jones or from Smith then the query becomes:

SELECT Orders.cust_id

FROM Orders

WHERE Salesperson = “Jones” or Salesperson = “Smith”;

• Another refinement is to use the BETWEEN operator. If we want only

those orders between 10 and 100 then we could define this as:

SELECT Orders.cust_id, Orders.cost

FROM Orders

WHERE Orders.cost >10 and Orders.cost <100;

• Or use the between operator:

SELECT Orders.cust_id, Orders.cost

FROM Orders

WHERE Orders.cost BETWEEN 10 and 100;

10/19/2009

20

• Finally, we might want to sort the data on some field. We can use the ORDER BY

clause:

SELECT Orders.cust_id, Orders.cost

FROM Orders

WHERE Orders.cost >10 and Orders.cost <100

ORDER BY Orders.cost;

• This sorts the data in ascending order of cost. An example is shown in the table:

CUST_ID COST

102 15

100 20

101 30

• If we wanted to sort them in descending order, use the DESC keyword:

SELECT Orders.cust_id, Orders.cost

FROM Orders

WHERE Orders.cost >10 and Orders.cost <100

ORDER BY Orders.cost DESC;

More SELECT

Joining Data from Multiple Tables

• If our data is in multiple tables we can join them

together in one query.

– Use a JOIN operator (Access default w/Design view)

– Add tables to the FROM, WHERE section (what we will use

here)

• Say we have the following table in addition to

Orders:

10/19/2009

21

Multiple Tables

SELECT Orders.cust_id, Customer.Cust_Name

FROM Orders, Customer

WHERE Orders.cost >10 and Orders.cost <100;

• What do you expect from this query?

Result:

100 Thomas Jefferson

101 Thomas Jefferson

102 Thomas Jefferson

100 Bill Clinton

101 Bill Clinton

102 Bill Clinton

100 George Bush

101 George Bush

102 George Bush

PRODUCT of two tables!

Multiple Tables

• Need to link the tables by their common field,

the customer ID:
SELECT Orders.cust_id, Customer.Cust_Name

FROM Orders, Customer

WHERE Orders.cust_id = Customer.Cust_Id and

Orders.cost >10 and Orders.cost <100;

Result:

100 Thomas Jefferson

101 Bill Clinton

102 George Bush

10/19/2009

22

INSERT command

• Allows you to insert single or multiple rows of

data into a table

• INSERT INTO table [(column-list)] [VALUES

(value-list) | sql-query]

INSERT examples

Given mytable(field1 as currency, field2 as text, field3 as integer):

INSERT INTO mytable (field1, field2, field3)

VALUES (12.10, “bah”,20);

Adds a new row to the table mytable

If you don’t specify every field then fields left out get the default:

INSERT INTO mytable (field1, field2) VALUES(24.2, “zot”);

Adds only for field1 and field2.

10/19/2009

23

INSERT Examples

INSERT INTO ORDERS (CUST_ID, PROD_ID, COST, SALESPESON)

VALUES (103, ‘Y338’, 55, ‘Smith’);

INSERT INTO ORDERS (PROD_ID, COST, SALESPESON)

VALUES (‘Y638’, 155, ‘Smith’);

Second might be useful if the CUST_ID is an autonumber field

DELETE

• Delete will remove a row from the table.

• DELETE FROM table_name [WHERE search-

condition]

Examples:

DELETE FROM mytable1;

Removes all rows!

DELETE FROM mytable1 WHERE field1 > 100;

Removes only rows with field1>100

10/19/2009

24

UPDATE
• Update lets you modify the contents of the data.

UPDATE table_name

SET field_name = expression [, field-name=expression …]

[WHERE search-condition]

UPDATE mytable SET field1 = 0.0;

Changes all field1’s to zero for every row!

UPDATE mytable SET field1 = 0.0, field2 = “woof”;

Sets field1 to 0 and field2 to woof for all rows!

If this is a violation, access will prevent it from happening

UPDATE mytable SET field1 = 25.0 WHERE field2=“foo”;

Only updates the field where field2 is “foo”

SQL Queries

• There are a lot more queries, but that should

give you an idea of what is possible and how it

is done

10/19/2009

25

Indexed files

Mostly skipping implementation of database systems; a little on

indices - key to quickly accessing a record

Hashing

• Each record has a key field

• The storage space is divided into buckets

• A hash function computes a bucket number

for each key value

• Each record is stored in the bucket

corresponding to the hash of its key

10/19/2009

26

Hashing the key field value 25X3Z to

one of 41 buckets

The rudiments of a hashing system

10/19/2009

27

Collisions in Hashing

• Collision: The case of two keys hashing to the

same bucket

– Major problem when table is over 75% full

– Solution: increase number of buckets and rehash

all data

Data Mining

• Data Mining: The area of computer science

that deals with discovering patterns in

collections of data

• Data warehouse: A static data collection to be

mined

– Data cube: Data presented from many

perspectives to enable mining

10/19/2009

28

Social Impact of Database Technology

• Problems

– Massive amounts of personal data are being collected

• Often without knowledge or meaningful consent of affected
people

– Data merging produces new, more invasive information

– Errors are widely disseminated and hard to correct

• Remedies

– Existing legal remedies often difficult to apply

– Negative publicity may be more effective

