Operating Systems

Chapter 4

Functions of Operating Systems

Oversee operation of computer

Store and retrieve files

Schedule programs for execution
Coordinate the execution of programs

Provide an interface to the user to access
machine functions

9/14/2009

Evolution of Shared Computing

Jobs: Program, data, Results

and directions
User domain I

Manual jobs o L» _+

Batch processing

Interactive processing
— Requires real-time processing

Time-sharing/Multitasking
— Implemented by Multiprogramming

Multiprocessor machines

Types of Software

* Application software
— Performs specific tasks for users

» System software
— Provides infrastructure for application software
— Consists of operating system and utility software

9/14/2009

Software classification

Software
/ \
Application System
/ \
Utility Operating
system
/ \
Shell Kernel

Operating System Components

* Shell: Communicates with users
— Text based
— Graphical user interface (GUI)
* Kernel: Performs basic required functions

— File manager
User
* Where files are on the disk, clusters 4

. . v
— Device drivers
User User
* Interface with physical devices - “r
— Memory manager -
— Scheduler and dispatcher N
u ¥ xU

9/14/2009

9/14/2009

Memory Manager

* Allocates space in main memory

* May create the illusion that the machine has more
memory than it actually does (virtual memory) by
playing a “shell game” in which blocks of data
(pages) are shifted back and forth between main
memory and mass storage

Getting it Started (Bootstrapping)

* Bootstrap: Program in ROM (example of
firmware)
— Run by the CPU when power is turned on

— Transfers operating system from mass storage to
main memory

— Executes jump to operating system

The booting process

Main memory

rom_| Bootstrap Disk storage
program L
Volatile_|
memory
Operating

L system

Step 1: Machine starts by executing the bootstrap
program already in memory. Operating
system is stored in mass storage.

Main memory

Bootstrap .
ROM— program Disk storage
Operating «f
. system
Volatile_|
memory
Operating
L system

Step 2: Bootstrap program directs the transfer of
the operating system into main memory
and then transfers control to it.

BIOS — Basic I/0 System — software utilities for fundamental 1/0 activities
stored on the ROM along with the bootstrap program

Processes

* Process: The activity of executing a program
* Process State: Current status of the activity

— Program counter

— General purpose registers

— Related portion of main memory

9/14/2009

Process Administration

e Scheduler: Adds new processes to the process
table and removes completed processes from
the process table

» Dispatcher: Controls the allocation of time
slices to the processes in the process table

— The end of a time slice is signaled by an interrupt.

Time-sharing between process A and
process B

Inte‘rrupt InteTrupt InteTrupt Inter‘rupt InteFrupt

| I |

| | I

! Process B i Process B i Proc
| | l i

: L/ :

I Process Process | Process Process I Process

| switch switch | switch switch | switch

| |

/
| \L | \ |
ss A Process A Process A

Advancing
time

\ 4 \
Timeslice Timeslice Timeslice Timeslice

See Windows Task Manager for an example

9/14/2009

Race Condition

* When two processes want to use a common
shared resource a “race condition” may result
and cause undesirable results

* Example: Two processes writing to the same
location in memory (one to subtract 10, one
to add 20)

Process 1 Process 2

Load value from memory to register Load value from memory to register
Add 20 Subtract 10

Store register back to memory Store register back to memory

Attempt to fix: use register 0 as “in
use” flag

Process 1
Process 2

If register O is O

Set register 0to 1

Load value from memory to register

Add 20

Store register back to memory

Set register 0to 0
Else

wait until register 0 is 0

If register 0 is O
Set register 0to 1
Load value from memory to register
Subtract 10
Store register back to memory
Set register 0to 0
Else
wait until register 0 is 0

Will this fix the problem?

9/14/2009

9/14/2009

Handling Competition for Resources

* Semaphore: A “control flag”

 Critical Region: A group of instructions that
should be executed by only one process at a
time

* Mutual exclusion: Requirement for proper
implementation of a critical region

Solution: Semaphore

In this example we use an uninterruptible Test and Set Instruction

Process 1
Process 2
If register O is O set register 0to 1

. If register O is O set register 0to 1
Load value from memory to register .
Add 20 Load value from memory to register

Subtract 10
Store register back to memory
Set register 0to 0
Else
wait until register 0 is 0

Store register back to memory
Set register 0to 0

Else
wait until register 0 is 0

9/14/2009

Deadlock

* Processes block each other from continuing

* Conditions required for deadlock
1. Competition for non-sharable resources
2. Resources requested on a partial basis

3. An allocated resource can not be forcibly
retrieved

A deadlock resulting from competition for
nonshareable railroad intersections

9/14/2009

Security

 Attacks from outside
— Problems
* System errors
* Insecure passwords
* Sniffing software
— Counter measures
* Auditing software
* Firewalls, scanners

Security (continued)

» Attacks from within
— Problem: System errors
— Counter measures: patches, virtual machine

— Problem: Unruly processes

— Counter measures: Control process activities via
privileged modes and privileged instructions

10

