
Signed �umbers 

 

So far we have discussed unsigned number representations.  In particular, we have looked 

at the binary number system and shorthand methods in representing binary codes.  With 

m binary digits, we can represent the 2
m
 unique patterns, from 000….0 to 111….1.  When 

we try to represent signed quantities in the same m digits, we still only have 2
m
 patterns 

to work with.  Unless we increase the number of digits available (i.e. make m larger), the 

representation of signed numbers will involve dividing up these 2
m
 patterns into positive 

and negative portions.  Sign/Magnitude is the simplest way to represent signed numbers, 

but the most common is a modification to sign/magnitude called two’s complement. 

 

Sign/Magnitude �otation 

 

Sign/magnitude notation is the simplest and one of the most obvious methods of 

encoding positive and negative numbers.  Assign the leftmost (most significant) bit to be 

the sign bit.  If the sign bit is 0, this means the number is positive.  If the sign bit is 1, 

then the number is negative.  The remaining m-1 bits are used to represent the magnitude 

of the binary number in the unsigned binary notation. 

 

Example using 4 bits: 

 

Binary  Value 

0000  +0 

0001  +1 

0010  +2 

0011  +3 

0100  +4 

0101  +5 

0110  +6 

0111  +7 

1000  -0 

1001  -1 

1010  -2 

1011  -3 

1100  -4 

1101  -5 

1110  -6 

1111  -7 

 

Looking at the list you should notice an immediate peculiarity; there are two 

representations for zero!  There is positive zero, and negative zero.  This can cause 

complications for computers checking numbers for equality.  Normally one can just 

compare all the bits between two numbers to see if they are the same.   But now we will 

need a special case for zero, to check for the two different representations.  More 

significant though, is if we perform addition on numbers in this representation, we don’t 

get the correct answer (e.g. +1 + -1  =  0001 + 1001  = 1010 which is -2, not 0). 



 

Radix Complementation – Two’s Complement 

 

In two’s complement, positive integers are represented the same was as sign magnitude 

(or regular unsigned binary) where the leftmost bit is 0: 

 

 Binary  Two’s Complement Value 

 0000  0 

 0001  +1 

 0010  +2 

 0011  +3 

 0100  +4 

 0101  +5 

 0110  +6 

 0111  +7 

 

Using four bits, the largest positive number we can represent is +7 since the first bit must 

be a 0 to denote positive. 

 

For a negative value for A, the sign bit, An-1 is one instead of zero.  We would like to 

assign the negative integers to the available bit patterns in a way that facilitates 

straightforward arithmetic.  A method that does this is to “count backwards” where 1111 

represents -1, 1110 represents -2, etc. 

 

This can be visualized in the figure below: 

 

 



This representation has the benefit that if we start at any number on the circle, we can add 

positive k (or subtract negative k) from that number by moving k position clockwise or 

counterclockwise.  If an arithmetic operation results in traversal of the point where the 

endpoints are joined, an incorrect answer is given.  However, we are guaranteed that if 

we add a positive and a negative value together, we will result in a value that is possible 

to represent using the number of bits available. 

 

A complete binary table for four bits is shown below: 

 Binary  Two’s Comp Value  Binary  Two’ Comp 

 0000  0    1111  -1 

 0001  +1    1110  -2 

 0010  +2    1101  -3 

 0011  +3    1100  -4 

 0100  +4    1011  -5 

 0101  +5    1010  -6 

 0110  +6    1001  -7 

 0111  +7    1000  -8 

 

Note that we no longer have two representations for zero;  we can represent down to -8 

and up to +7. 

 

To summarize, two’s complement lets us have only one representation for zero and 

allows us to easily perform arithmetic operations without special cases for sign bits. 

 

Shortcut for two’s complement 

 

If we are given a decimal value, A, that we want to represent in two’s complement, there 

is an easy way to do it: 

 

1. If A is positive, represent it using the sign-magnitude representation.  The 

leftmost bit must be 0, and the remaining bits are the binary for the integer.  Be 

careful there are enough bits available to represent the number. 

2. If A is negative, first represent in binary +A.  

a. Flip all the 1’s to 0’s and the 0’s to 1’s 

b. Add 1 to the result using unsigned binary notation 

 

Given a binary value in two’s complement to compute its value in decimal: 

 

1. If the leftmost bit is 0, the number is positive.  Compute the magnitude as an 

unsigned binary number. 

2. If the leftmost bit is 1, the number is negative.   

a. Flip all the 1’s to 0’s and the 0’s to 1’s 

b. Add 1 to the result using unsigned binary notation 

c. Compute the value as if it were an unsigned binary value, say it is B.  This 

is the magnitude of the negative number. 

d. The actual value is -B 



 

 

Examples: 

 

Assume that m = 5, i.e. we have 5 bits available to represent our values. 

 

What is –5 (decimal) in two’s complement? 

 +5 in unsigned binary is 00101 

 Flip the bits to get 11010 

 Now add 1:  11011 

 The answer is 11011 

 

What is –7 (decimal) in two’s complement? 

 +7 in unsigned binary is 00111 

 Flip the bits to get 11000 

 Now add 1: 11001 

 

Note that as m changes, we get different bit strings for negative numbers. 

 

 

 

What is the decimal value of the two’s complement binary value 11100? 

 Flip bits: 00011 

 Add one: 00100 

 This is 4, so the answer is –4 

 

If the computer displays the hexadecimal number 1D, with m=8, what is this in decimal? 

 1D in binary is 0001 1101 

 It starts with 0, so it is positive. 

 DON’T FLIP ANY BITS!  We just convert this as unsigned binary: 

  00011101 = 29 in decimal 

 

 

Arithmetic on Two’s Complement Values 

 

Learning the rules of binary arithmetic is much easier than learning the rules of decimal 

arithmetic.  Instead of memorizing 10x10 addition and subtraction tables, you only need 

to learn a 2x2 table: 

 

+ 0 1 

0 0 1 

1 1 0* 

 

* includes a carry to the next column 

 



A piece of hardware called an adder performs the task.  It takes two binary numbers A 

and B, adds them bit by bit, and computes carries. 

 

Example: 

 

 Add 00101 + 00110  (+5 and +6) 

  

 00101 

+ 00110 

 ------- 

 01011 = 11 (decimal) 

 

Example: 

 

 Add +7 and –2 :   +7 = 00111 

 +2 = 00010, so flip the bits:  11101 and add 1:  11110 

 

 00111 

+ 11110 

 ------- 

          100101  Discard the extra carry to give 00101 = 5   

 

How can we discard the extra 1 and be sure we have the right result?  The explanation is 

that the 1 in the column to the left of the high order bit is simply the value 2
m
 or M, the 

modulus.  Remember that adding or subtracting the modulus will not change the value of 

a number.  Discarding the extra bit is the same as subtracting the modulus, and is a 

perfectly legal operation.  Nevertheless, there are times when we want to know about this 

carry, particularly when we overflow when adding two numbers using unsigned binary.  

For this reason, instead of actually discarding the carry bit, it is usually stored in a special 

location called the carry register.   

 

Example: 

 

Add –5 + -4 

5 = 00101.  Flip the bits to get 11010, and add 1 to get 11011 

4 = 00100.  Flip the bits to get 11011, and add 1 to get 11100 

 

 11011 

+ 11100 

 ------- 

          110111  = 10111 when we discard the carry 

 

10111 is negative, as indicated by the leading 1. 

Flip the bits to get 01000.  Add 1 to get 01001.  The result is 9.  Since it is negative, we 

really have –9. 

 



Example:  What is the two’s complement of 0? 

 

 00000 flip the bits = 11111.  Add 1 and we get 100000.  Since we ignore the carry 

bit, we end up with just 00000.  That is, 0 and –0 are represented the same way in our 

system (yay!) 

 

 

 

 

 

 

Example:  What is 5 + 14, using 5 bits? 

 

 5 = 00101,  14 = 01110 

 

 00101 

+ 01110 

 ------- 

 10011 

 

If we didn’t have the convention that the first bit indicates the sign, this would be 19 in 

unsigned binary.  But we are using two’s complement, so this number would be: 

 

 Flip bits:  01100, Add 1:  01101  = 13    giving –13 

 

Obviously, 5 plus 14 is not –13.   What is wrong? 

 

We have encountered what is called an overflow condition.  We must be warned that this 

condition has occurred so that we do not improperly try to use the result that is produced.   

All computers have an overflow register that is turned on if the previous arithmetic 

operation resulted in an overflow condition. 

 

Fortunately, it is easy to check for the overflow condition.  We simply check to see if we 

are adding two positive numbers.  If the result is a negative number, then there was an 

overflow.  You cannot generate an overflow when adding a positive and negative 

quantity.  In a similar fashion, if we add two negative numbers and end up with a positive 

number, we have also encountered overflow. 

 

To summarize, the results of an addition A + B are: 

 

• A + B   with any carries discarded 

• Carry register = 0 or 1 if there was a carry 

• Overflow register = 0 or 1 if there was an overflow 

 

 



Performing Subtraction 

 

In order to do subtraction, hardware designers do not like to require extra hardware.  

Instead of separate circuits for subtraction, subtraction is performed by using addition 

with a negative number.  That is: 

 

 D = Y – X 

 

Is computed by: 

 

 D = -X + Y 

 

To compute –X, we simply perform the process of flipping the bits on X and then adding 

1, giving us the negative of X.  We then perform the addition routine which is identical to 

what we previously discussed. 

 

 

Storing Fractions 

 

So far we have discussed signed and unsigned number representations.  But how do we 

represent fractions?  For example, we also need a way to represent a number like 

409.331.  This is done based on scientific notation and is called floating point notation.  

 

Converting from Decimal to Binary 

 

Let’s say that we want to convert 252.390625 into binary.  The first task is to convert the 

number 252 into binary.  We already know how to do this, we just divide 252 by 2 and 

keep the remainders, repeating the process with the non-fractional part.   252 = 11111100 

 

The next step is to convert 0.390625 into binary.   To do this, instead of dividing by 2, 

we multiply by 2.  Each time we multiply, record whatever is to the left of the decimal 

place after the operation.  The first number becomes the leftmost bit, and the final 

number will be the rightmost bit.  We then repeat this process using whatever is to the 

right of the decimal place.   

 

0.390625 * 2 =   0.78125   0 as leftmost bit 

0.78125 * 2 =  1.5625    1 as the next bit 

0.5625 * 2 =   1.125    1 

0.125 * 2 =   0.25    0 

0.25 * 2 =   0.5    0 

0.5 * 2 =   1.0    1 

0 

 

Upon hitting 0, we’re finished.  The binary representation of this number is then: 

  

 11111100.011001 



 Exercise:   

 

 What is 3.625 in binary? 

 What is 0.1 in binary?    

 

Note that with the last example, we could continue forever.  In practice, we continue the 

process until we reach the precision desired to represent the number.  Also note that if we 

wanted to use this process on something other than base 2, we would just multiply by 

whatever base we were interested in (e.g., base 16). 

 

Converting Binary to Decimal 

 

Given a floating point number in binary like 1100.011001, how do we convert this back 

to decimal?  The process is almost identical to the process for unsigned binary.    The 

stuff to the left of the decimal point is the same: 

 

 1100  = 

 0 * 2
0
 + 0 * 2

1
 + 1*2

2
 + 1*2

3
  

 = 4+8  

 = 12 

 

For the fractional part, .011001 we multiply and sum each bit, but starting with 2
-1
 power 

and continuing up to 2
-2
, 2
-3
, etc. 

 

 . 0 1 1 0 0 1 

  2
-1
 2

-2
 2

-3
 2

-4
 2

-5
 2

-6
 

 

Recall that 2
-1
 is just 1/2,  2

-2
 is 1/4, 2

-3
 is 1/8, etc. 

 

Summing this up gives us: 

 

  0 * 2
-1
 + 1*2

-2
 + 1*2

-3
 + 0*2

-4
 +0*2

-5
 +1*2

-6
 

 

 = 1 / 4    +  1 / 8    +  1 / 64 

 = .25  + .125 + .015625 

 = .390625 

 

Putting these together gives us  12.390625. 

 

Exercise:  What is 0100.1111  in decimal? 

 



Scientific �otation 

 

What we’ve described is conceptually how to convert fractions from decimal to binary, 

but typically the data isn’t stored in the computer in the same format.  First we need to 

normalize the data, using scientific notation.    

 

Consider the decimal number 0201.0900  .  First we need to determine which digits are 

significant.  The formal rules for significant digits is: 

 

1. A nonzero digit is always significant 

2. The digit 0 is never significant when it precedes nonzero digits 

 

Using these rules, we can discard the initial 0 leaving us with 201.0900.   Notice that we 

kept the trailing zeros; they may or may not be significant.  Without more information we 

can’t tell if we want precisely 201.0900, or if perhaps 201.09 is all we knew and the extra 

zeros are padding. 

 

To represent this in scientific notation, we move the decimal point to the position 

immediately to the right of the leftmost significant digit, and multiply by the correct 

factor of 10 to get back the original value: 

 

 2.010900 * 10
2
 

 

In this case, we moved the decimal point two places to the left, so we multiply by 10
2
.  If 

we had a fraction we would do the opposite and multiply by a fraction of 10: 

 

 0.0020109  =   2.0109 * 10
-3
 

 

We can apply the same process to binary fractions, but use powers of 2 instead of powers 

of 10.  Say that we have the binary value 100.1011.  Converting this to scientific notation 

results in: 

 

1.001011 * 2
2
 

 

Similarly,  0.00100  converted to scientific notation results in: 

 

  1.00 * 2
-3 

 

Exercise:  What is 101011.101 in scientific notation? 

 



Floating Point Representation 

 

Let’s describe a simple format for storing floating point numbers.  In practice, a different 

(but similar in principle) format called IEEE 754 is used in which 32 bits store a floating 

point value.  In our example, we’ll use 16 bits. 

 

To represent a floating point number, first convert it to binary scientific notation.  For 

example, let’s say that we end up with 1.001011 * 2
3
.  In general terms, this value is:   

(Sign) * (Mantissa) * 2
(exponent) 

 

In storing this value, by default, we will assume that the power is 2.  To get this value 

back, we will need to store the “1.001011”, the sign using a sign bit, and then the 

exponent 3. 

 

The pieces that we must store are the: 

• Sign 

• Exponent (the 3) 

• Mantissa  (the 1.001011 part) 

 

The format we will use for our 16 bit format is: 

 

 

 

 1          5       10 

 

1 bit is allocated to the sign field (the leftmost bit). 

5 bits are allocated to store the exponent field. 

10 bits are allocated to store the mantissa field. 

 

Sign Field  

 

This is just a sign bit, like we used with signed binary numbers.  It is either 0 or 1.  0 

indicates a positive number, and 1 indicates a negative number.  For our example number 

of 1.001011* 2
3
, this is positive so the sign bit would hold a 0. 

 

Exponent Field 

 

The exponent section is five bits long.  In our case let’s just store an integer using two’s 

complement.  In the IEEE format, a different notation (biased or excess notation) is used.  

For our example number of 1.001011 * 2
3
 the exponent is 3, so we store 00011 for the 

exponent field. 

 

S EEEEE MMMMMMMMMM 



Mantissa Field 

 

The mantissa section stores the rest of the floating point number.  Since the power of 2 is 

implicit, all that is left to store are the significant digits of the number to represent.  In the 

case of our example of 1.001011* 2
3
 this corresponds to the 1.001011 part. 

 

 

Putting everything together we have: 

 

Sign = 0 

Exponent = 00011 

Mantissa = 0001001011 

 

Or:  0 00011 0001001011 

 

Grouping in 4 bits each we can express this succinctly as a hex number: 

 

0000 1100 0100 1011  =  0D4B 

 

 

Precision 

 

Precision refers to the number of bits that we can store in the mantissa.  The more bits we 

have, the more precise the value we can represent.   One way we can increase the 

precision slightly is by dropping the leftmost 1 of the mantissa.  We can drop this bit 

because it will always be there in scientific notation.  In calculating the floating point 

value we would have to insert the 1 back in.  In our example we won’t use this “hidden 

bit” but it is used in practice. 

 

Let’s look at the range of values we can store in our floating point representation.  With 5 

bits for an exponent, we can represent exponents using our two’s complement notation 

from  

10000 = -16 to 

01111 = +15 

 

So the smallest value we can store is 1.0 * 2
-16
 (pretty small!) and the biggest value we 

can store is 1.111111111 * 2
15
.   If we expand this by moving the decimal point 15 places 

to the right then we get: 

 

1111111111000000 =  65472 

 

What’s the second largest value we could store? 

1.111111110 * 2
15
 = 1111111110000000 =  65408 

 

This means that our floating point number format can’t exactly store any value between 

65408 and 65472.   This problem is more significant with larger numbers than with 



smaller numbers.  We can alleviate the problem by using more bits for the mantissa, but 

ultimately all floating point number formats suffer from this problem. 

 

In contrast, consider a 16 bit unsigned integer.  It can store values from 0 to 2
16
 or 65536.   

There are also exactly 65536 different bit patterns.  So using 16 bits for just integers can 

exactly represent all the values between 65408 and 65472.  Of course, it can’t represent 

floating point values like ½ or 2.75.   In the unsigned integer format, every one of the 

65536 bit patterns is used to represent an integer.  In the floating point format, there are 

still only 65536 bit patterns available.  Some of those bit patterns are used to represent 

floating point numbers, so we lose the ability to represent some integers.  It turns out we 

lose more large integers than small ones. 

 

 

 

 

 


