Converting Numeric Types

In C# a variable of one data type can be converted to a different data type. This can be done implicitly and explicitly. For example, we can copy an integer into a double with no adverse effects:

doubleVar = intVar;
Here is a selected list of implicit type conversions we can make:

[image: image1.png]From
byte
short
int
long

float

To

short, i, long. float, double, or decimal
int, long, float, double, or decimal

long float, double, or decimal

loat, double, or decimal

double

Other kinds of implicit type conversions potentially lose data. For example, if we convert a double to a float, there aren’t as many bits in a float so we will lose precision in the number represented. In cases like this the programmer must explicitly coerce or cast or typecast the data from one type to another.
To cast put the target data type in parenthesis in front of the variable, e.g.:

intVar = (int) doubleVar;

floatVar = (float) doubleVar;

You may lose data when casting, e.g. if doubleVar contains 10.8 then after casting to an integer you’ll only have the value 10.

Converting Strings

You can’t cast back and forth from a string and a numeric data type. However, this is often desired because if you create a form with a textbox, whatever the user enters into the textbox is read in as a string. If you want to treat the string like a number for some calculation then you have to convert it to the proper data type.

To convert a string containing a number into a numeric data type use the data type’s parse method.

The format is:

datatype.parse(string containing number)

For example:

 string s = "42";

 int val;

 val = int.Parse(s);

 Console.WriteLine(val);
// Outputs 42 as an integer

If you wanted to convert a string to a double:

 string s = "42.33";

 double val;

 val = double.Parse(s);

 Console.WriteLine(val);
// Outputs 42.33

To go the other direction and convert a number to a string, we can use the ToString() method which exists for any variable:
 int val = 42;

 string s;

 s = val.ToString();

 Console.WriteLine(s);

// Outputs 42 as a string

There is also a Convert.ToString method that can be used and does the same thing.
Named Constants

If a variable’s value is never going to change, it is a good programming practice to define the value as a constant rather than as a variable. For example, if you are storing the value PI as 3.14159 then it should be declared a constant since it never changes.
As the name implies, something defined as a constant may never be changed. To create a constant, add the word const in front of the variable declaration:

const datatype varname = value;

String Methods and Properties
There are a number of useful string methods and properties. Strings are objects and thus have their own properties and methods. To access them, give the name of the string followed by a dot:

str.Length()

; returns number of characters in the string

str.ToUpper()

; returns the string with all letters in uppercase

 does not change the original string, returns a copy

str.ToLower()

; returns the string with all letters in lowercase

 does not change the original string, returns a copy

str.Trim()

; returns the string with leading and trailing whitespace

 removed. Whitespace is blanks, tabs, cr’s, etc.

str.Substring(m,n)
; returns the substring of str starting at character m

 and fetching the next n characters. M starts at 0

 for the first character! If n is left off, then the remainder

 of the string is returned starting at position m.

Here are some examples:

 string s = "eat big macs ";

 Console.WriteLine(s.Length);

 Console.WriteLine(s.ToUpper());

 Console.WriteLine(s + "!");

 s = s.Trim();

 Console.WriteLine(s + "!");

 Console.WriteLine(s.Substring(0, 3));

 Console.WriteLine(s.Substring(4));

 Console.WriteLine(s.Substring(20));

Output:

15

EAT BIG MACS

eat big macs !

eat big macs!

eat

big macs

CRASH! Error message (do you know why?)
On occasion you may be interested in generating the empty string, or a string with nothing in it. This is a string of length 0. It is referenced by simply “” or two double quotes with nothing in between.
Using Text Boxes for Input and Output

It turns out that any text property of a control is also a string, so what we previously learned about strings also applies to the controls! A particularly useful example is to manipulate the content of text boxes.

For example, say that we create a text box control named txtBox. Whatever the user enters into the textbox is accessible as a string via txtBox.Text . For example:

string s;

s = txtBox.Text.ToUpper()

txtBox.Text = s

This changes the txtBox.Text value to be all upper case letters.
Text Boxes provide a nice way to provide textual input and output to your program. However, recall that other items also have a text property, such as Me.Text, which will change the caption on the title bar of your application.

Because the contents of a text box is always a string, sometimes you must convert the input or output if you are working with numeric data. Use the Parse method:

double.Parse(string);

int.Parse(string);

Etc.

For example, the following increments the value in a text box by 1:
 int i;

 i = int.Parse(txtBox.Text);

 i = i + 1;

 txtBox.Text = i.ToString();

Class Example:
Re-do the killer whale calculator but create a form where the user can input the values for the following four variables:

· Number of killer whales in the population

· Mass of a single killer whale

· Mass of the prey to be consumed (use a sea lion)

· kilocalories / kg of the prey to be consumed

Previously they were hard-coded into the program.

Exceptions – Try/Catch Blocks

Consider the following code:

int i = int.Parse(txtBox.Text);
This looks harmless, but txtBox might contain a non-numerical value, like “abc123” which could cause problems with the logic of the program.

This type of error is called a runtime error and is not caught until the program runs, because the result depends on the data input to the program (as opposed to compiler errors, which are caught when the program is compiled).

In the case of the error above, and others that are similar, C# will throw an exception and crash. An exception is some condition that was not expected and caused an error. If we want the program to fail more gracefully we can use the try/catch block:

try

try-block

catch (exception type)

catch-block

The try-block contains program statements that might throw an exception.

The catch-block contains statements to execute if an exception is thrown.

Here is a short example:

 float f;

 try

 {

 f = float.Parse(txtBox.Text);

 MessageBox.Show(f.ToString());

 }

 catch (Exception ex)

 {

 Console.WriteLine("There was an error.");

 }

If the user enters a value such as “x123” then the program will “catch” the error in the conversion and skip directly to the catch block:

There was an error.

There are more detailed ways to handle exceptions and specific types of exceptions. We’ll look at that later when we cover file I/O.

Class Example

Re-do the Killer Whale calculator program but catch non-numeric inputs and display an error message.

