Picture Color Manipulation

Using a Loop
Our first picture recipe

def decreaseRed(picture):
for p in getPixels(picture):
value=getRed(p)
setRed(p,value*0.5)

Used like this:

>>> file=r"c:\mediasources/katie.jpg"
>>> picture=makePicture(file)

>>> show(picture)

>>> decreaseRed(picture)

>>> repaint(picture)

Once we make it work for one
picture, it will work for any picture

>>> file=pickAFile()

>>> pic=makePicture(file)
>>> decreaseRed(pic)
>>> show(pic)

Can repeat:

>>> decreaseRed(pic)
>>> repaint(pic)

Think about what we just did

e Did we Change the def decreaseRed(picture):
n for p in getPixels(picture):
program at all’ value=getRed(p)
« Did it work for both of setRed(p,value®0.5)

the examples?

« What was the input
variable picture each
time, then?

— It was the value of

whatever picture we
provided as input!

Increasing Red

def increaseRed(picture):

for p in getPixels(picture): What happened

value=getRed(p) o1
setRed(p,value*1_3) here?!?

Remember that the
limit for redness is
255.

If you go beyond
255, all

kinds of weird
things can happen

How does increaseRed differ from
decreaseRed?

 Well, it does increase rather than
decrease red, but other than that...
— It takes the same input

— It can also work for any picture

* It's a specification of a process that’ll work for any
picture

» There’s nothing specific
to any picture here.

f\r\k@

Practical programs =
parameterized processes

Clearing Blue

def clearBlue(picture):
for p in getPixels(picture):
setBlue(p,0)

Again, this will work for
any picture.

Try stepping through
this one yourself!

Can we combine these?
Why not!

« How do we turn this
beach scene into a
sunset?

* What happens at sunset?

— Atfirst, | tried increasing
the red, but that made
things like red specks in
the sand REALLY
prominent.

+ That can’t be how it really
works

— New Theory: As the sun
sets, less blue and green is
visible, which makes things
look more red.

A Sunset-generation Function

def makeSunset(picture):
for p in getPixels(picture):
value=getBlue(p)
setBlue(p,value*0.7)
value=getGreen(p)
setGreen(p,value*0.7)

Creating a negative

* Let’s think it through
—R,G,B go from 0 to 255

— Let’s say Red is 10. That’s very light red.
» What'’s the opposite? LOTS of Red!

— The negative of that would be 245: 255-10
» So, for each pixel, if we negate each color

component in creating a new color, we
negate the whole picture.

Creating a negative

def negative(picture):
for px in getPixels(picture):
red=getRed(px)
green=getGreen(px)
blue=getBlue(px)
negColor=makeColor(255-red, 255-green, 255-blue)
setColor(px,negColor

Original, negative, double negative

Converting to grayscale

« We know that if red=green=blue, we get grey
— But what value do we set all three to?

« What we need is a value representing the
darkness of the color, the luminance

» There are lots of ways of getting it, but one way
that works reasonably well is dirt simple—simply
take the average:

(red+green+blue)
3

Converting to grayscale

def grayscale(picture):
for p in getPixels(picture):
intensity = (getRed(p) + getGreen(p) + getBlue(p)) / 3
setColor(p,makeColor(intensity,intensity,intensity))

Does this make
sense?

f\r\@

Why can’t we get back again?

» Converting to grayscale is different from
computing a negative.
— A negative transformation retains information.
» With grayscale, we’ve lost information

— We no longer know what the ratios are
between the reds, the greens, and the blues

— We no longer know any particular value.

But that’s not really the best
grayscale

* In reality, we don’t perceive red, green,
and blue as equal in their amount of
luminance: How bright (or non-bright)
something is.

— We tend to see blue as “darker” and red as
“brighter”

— Even if, physically, the same amount of light is
coming off of each

» Photoshop’s grayscale is very nice: Very
similar to the way that our eye sees it
— B&W TV’s are also pretty good

Building a better greyscale

« We'll weight red, green, and blue based on
how light we perceive them to be, based on
laboratory experiments.

def grayScaleNew(picture):
for px in getPixels(picture):
newRed = getRed(px) * 0.299
newGreen = getGreen(px) * 0.587
newBlue = getBlue(px) * 0.114
luminance = newRed+newGreen+newBlue
setColor(px,makeColor(luminance,luminance,luminance))

Comparing the two grayscales:
Average on left, weighted on right

Let’s try making Barbara a
redhead!

» We could just try increasing the redness,
but as we've seen, that has problems.
— Overriding some red spots
— And that’s more than just her hair

« If only we could increase the redness only
of the brown areas of Barb’s head...

Treating pixels differently

 We can use the if statement to treat some
pixels differently.

» For example, color replacement: Turning
Barbara into a redhead

— Use the MediaTools to find the RGB values
for the brown of Barbara’s hair

— Then look for pixels that are close to that color

(within a threshold), and increase by 50% the
redness in those

10

Making Barb a redhead

def turnRed(): / ‘
brown = makeColor(57, 16, 8)

file = r"C:\My Documents\mediasources\barbara.jpg"
picture = makePicture(file)
for px in getPixels(picture):
color = getColor(px)
if distance(color, brown) < 50.0:
redness = getRed(px)*1.5
setRed(px, redness)
show(picture)
return(picture)

Di

Talking through the program slowly

« Why aren’t we taking any input? Don’t want any: Recipe is
specific to this one picture.

» The brown is the brownness that figured out from
MediaTools

» The file is where the picture of Barbara is on the computer
* We need the picture to work with

def turnRed():
brown = makeColor(57, 16, 8)
file = r"C:\My Documents\mediasources\barbara.jpg"
picture = makePicture(file)
for px in getPixels(picture):
color = getColor(px)
if distance(color, brown) < 50.0:
redness = getRed(px)*1.5
setRed(px, redness)
show(picture)
return(picture)

11

Walking through the for loop

» Now, for each pixel px in the picture, we
— Get the color

— See if it's within a distance of 50 from the brown we
want to make more red

— If so, increase the redness by 50%

def turnRed():
brown = makeColor(57, 16, 8)
file = r'"C:\My Documents\mediasources\barbara.jpg"
picture = makePicture(file)
for px in getPixels(picture):
color = getColor(px)
if distance(color, brown) < 50.0:
redness=getRed(px)*1.5
setRed(px, redness)
show(picture)
return(picture)

How an if works

e if is the command

name

* Next comes an l
expression: Some kind _ A -
of true o_r false if distance(color, brown) < 50.0:
comparison redness = getRed(px)*1.5

* Then a colon blueness = getBlue(px)

e Then the body of the greenness = getGreen(px)

if—the things that will
happen if the
expression is true

12

Expressions

+ Can test equality with ==
» Can also test <, >, >=, <=, <> (not equals)

* In general, O is false, 1 is true

— S0 you can have a function return a “true” or
“false” value.

Expressions

« Can use and and or inside the expression
we are testing in the if statement

red = getRed(px)

if (distance(color, brown) < 50.0) and (red > 200):
redness =red * 1.5
setRed(px, redness)

red = getRed(px)

if (distance(color, brown) < 50.0) or (red > 200):
redness =red * 1.5
setRed(px, redness)

13

Returning from a function

» At the end, we show and return the picture

« Why are we using return?
— Because the picture is created within the function
— If we didn’t return it, we couldn’t get at it in the
command area
* We could print the result, but we’d more likely
assign it a name
if distance(color, brown) < 50.0:
redness = getRed(px)*1.5
setRed(px, redness)

show(picture)
return(picture)

Things to change

» Lower the threshold to get more pixels

— But if it’s too low, you start messing with the
wood behind her

* Increase the amount of redness

— But if you go too high, you can go beyond the
range of valid color intensities (i.e. more than
255)

14

Replacing colors using if

« We don’t have to do one-to-one changes or
replacements of color

 We can use if to decide if we want to make a
change.

— We could look for a range of colors, or one specific
color.

— We could use an operation (like multiplication) to set
the new color, or we can set it to a specific value.

« It all depends on the effect that we want.

(\r\\@

Posterizing:
Reducing the range of colors

15

Posterizing: How we do it

« We look for a range of colors, then map

them to a single color.

—If red is between 63 and 128, set it to 95
— If green is less than 64, set it to 31

 This requires many if statements, but the

idea is pretty simple.

» The end result is that many colors, get
reduced to a few colors

Posterizing function

def posterize(picture):
#loop through the pixels
for p in getPixels(picture):
#get the RGB values
red = getRed(p)
green = getGreen(p)
blue = getBlue(p)

#check and set red values
if(red < 64):
setRed(p, 31)
if(red > 63 and red < 128):
setRed(p, 95)

if(red > 127 and red < 192):

setRed(p, 159)

if(red > 191 and red < 256):

setRed(p, 223)

#check and set green values

if(green < 64):
setGreen(p, 31)

if(green > 63 and green < 128):
setGreen(p, 95)

if(green > 127 and green < 192):
setGreen(p, 159)

if(green > 191 and green < 256):
setGreen(p, 223)

#check and set blue values

if(blue < 64):
setBlue(p, 31)

if(blue > 63 and blue < 128):
setBlue(p, 95)

if(blue > 127 and blue < 192):
setBlue(p, 159)

if(blue > 191 and blue < 256):
setBlue(p, 223)

16

What's with this “#” stuff?

» Any line that starts with # is ignored by
Python.

 This allows you to insert comments: Notes
to yourself (or another programmer) that
explain what's going on here.

— When programs get longer, and have lots of
separate parts, it gets hard to figure out from
the code alone what each piece does.

— Comments can help explain the big picture.

Generating sepia-toned prints

 Pictures that are sepia-toned have a
brownish tint to them that we associate
with older photographs.

* It's not just a matter of increasing the
amount of brown in the picture, because
it’s not a one-to-one correspondence.

— Instead, colors in different ranges get
converted to other colors.

— We can create such conversions using if

17

Example of sepia-toned prints

Here’s how we do it

sepiaTint(picture):
#Convert image to greyscale
grayScaleNew(picture)

#loop through picture to tint pixels

for p in getPixels(picture):
red = getRed(p)
blue = getBlue(p)

#tint shadows

if (red < 63):
red = red*1.1
blue = blue*0.9

#tint midtones

if (red > 62 and red < 192):
red = red*1.15
blue = blue*0.85

#tint highlights
if (red > 191):
red = red*1.08
if (red > 255):
red = 255
blue = blue*0.93

#set the new color values
setBlue(p, blue)
setRed(p, red)

18

What's going on here?

» First, we're calling grayScaleNew (the one with
weights).
— It's perfectly okay to have one function calling another.

+ We then manipulate the red (increasing) and the blue
(decreasing) channels to bring out more yellows and
oranges.

Why are we doing the comparisons on the red?

Why not? After grayscale conversion, all channels are the
samel!

Why these values?

Trial-and-error: Twiddling the values until it looks the way that
you want

Reviewing:
All the Programming We’ve Seen

» Assigning names to values with =
* Printing with print

« Looping with for

» Testing with if

 Defining functions with def

— Making a real function with parameters uses ()
— Making a real function with an output uses return

» Using functions to create programs (recipes)
and executing them

19

