
1

Picture Color Manipulation

Using a Loop
Our first picture recipe

def decreaseRed(picture):

for p in getPixels(picture):

value=getRed(p)

setRed(p,value*0.5)

Used like this:Used like this:Used like this:Used like this:

>>> file=r"c:\mediasources/katie.jpg"

>>> picture=makePicture(file)

>>> show(picture)

>>> decreaseRed(picture)

>>> repaint(picture)

2

Once we make it work for one
picture, it will work for any picture

>>> file=pickAFile()
>>> pic=makePicture(file)
>>> decreaseRed(pic)

>>> show(pic)

Can repeat:

>>> decreaseRed(pic)
>>> repaint(pic)

Think about what we just did

• Did we change the
program at all?

• Did it work for both of
the examples?

• What was the input
variable picture each
time, then?

– It was the value of

whatever picture we
provided as input!

def decreaseRed(picture):

for p in getPixels(picture):

value=getRed(p)

setRed(p,value*0.5)

3

Increasing Red

def increaseRed(picture):

for p in getPixels(picture):

value=getRed(p)

setRed(p,value*1.3)

What happened

here?!?

Remember that the

limit for redness is

255.

If you go beyond
255, all

kinds of weird

things can happen

How does increaseRed differ from
decreaseRed?

• Well, it does increase rather than

decrease red, but other than that…

– It takes the same input

– It can also work for any picture

• It’s a specification of a process that’ll work for any

picture

• There’s nothing specific
to any picture here.

Practical programs =

parameterized processes

4

Clearing Blue

def clearBlue(picture):

for p in getPixels(picture):

setBlue(p,0)

Again, this will work for

any picture.

Try stepping through

this one yourself!

Can we combine these?
Why not!

• How do we turn this

beach scene into a
sunset?

• What happens at sunset?

– At first, I tried increasing

the red, but that made

things like red specks in

the sand REALLY

prominent.

• That can’t be how it really

works

– New Theory: As the sun

sets, less blue and green is

visible, which makes things

look more red.

5

A Sunset-generation Function

def makeSunset(picture):

for p in getPixels(picture):

value=getBlue(p)

setBlue(p,value*0.7)

value=getGreen(p)

setGreen(p,value*0.7)

Creating a negative

• Let’s think it through

– R,G,B go from 0 to 255

– Let’s say Red is 10. That’s very light red.

• What’s the opposite? LOTS of Red!

– The negative of that would be 245: 255-10

• So, for each pixel, if we negate each color

component in creating a new color, we

negate the whole picture.

6

Creating a negative
def negative(picture):

for px in getPixels(picture):

red=getRed(px)

green=getGreen(px)

blue=getBlue(px)

negColor=makeColor(255-red, 255-green, 255-blue)

setColor(px,negColor)

Original, negative, double negative

(This gives us a quick way to test our function:

Call it twice and see if the result is equivalent

to the original)

7

Converting to grayscale

• We know that if red=green=blue, we get grey

– But what value do we set all three to?

• What we need is a value representing the
darkness of the color, the luminance

• There are lots of ways of getting it, but one way
that works reasonably well is dirt simple—simply
take the average:

Converting to grayscale

def grayscale(picture):

for p in getPixels(picture):

intensity = (getRed(p) + getGreen(p) + getBlue(p)) / 3

setColor(p,makeColor(intensity,intensity,intensity))

Does this make

sense?

8

Why can’t we get back again?

• Converting to grayscale is different from

computing a negative.

– A negative transformation retains information.

• With grayscale, we’ve lost information

– We no longer know what the ratios are
between the reds, the greens, and the blues

– We no longer know any particular value.

Media compressions are one kind of transformation.
Some are lossless (like negative);
Others are lossy (like grayscale)

But that’s not really the best

grayscale

• In reality, we don’t perceive red, green,
and blue as equal in their amount of
luminance: How bright (or non-bright)
something is.
– We tend to see blue as “darker” and red as

“brighter”

– Even if, physically, the same amount of light is
coming off of each

• Photoshop’s grayscale is very nice: Very
similar to the way that our eye sees it
– B&W TV’s are also pretty good

9

Building a better greyscale

• We’ll weight red, green, and blue based on

how light we perceive them to be, based on

laboratory experiments.
def grayScaleNew(picture):

for px in getPixels(picture):

newRed = getRed(px) * 0.299

newGreen = getGreen(px) * 0.587

newBlue = getBlue(px) * 0.114

luminance = newRed+newGreen+newBlue

setColor(px,makeColor(luminance,luminance,luminance))

Comparing the two grayscales:
Average on left, weighted on right

10

Let’s try making Barbara a
redhead!

• We could just try increasing the redness,

but as we’ve seen, that has problems.

– Overriding some red spots

– And that’s more than just her hair

• If only we could increase the redness only

of the brown areas of Barb’s head…

Treating pixels differently

• We can use the if statement to treat some
pixels differently.

• For example, color replacement: Turning
Barbara into a redhead
– Use the MediaTools to find the RGB values

for the brown of Barbara’s hair

– Then look for pixels that are close to that color
(within a threshold), and increase by 50% the
redness in those

11

Making Barb a redhead

def turnRed():

brown = makeColor(57, 16, 8)

file = r"C:\My Documents\mediasources\barbara.jpg"

picture = makePicture(file)

for px in getPixels(picture):

color = getColor(px)

if distance(color, brown) < 50.0:

redness = getRed(px)*1.5

setRed(px, redness)

show(picture)

return(picture)

Original:

Digital makeover:

Talking through the program slowly

• Why aren’t we taking any input? Don’t want any: Recipe is
specific to this one picture.

• The brown is the brownness that figured out from
MediaTools

• The file is where the picture of Barbara is on the computer

• We need the picture to work with

def turnRed():
brown = makeColor(57, 16, 8)
file = r"C:\My Documents\mediasources\barbara.jpg"

picture = makePicture(file)
for px in getPixels(picture):

color = getColor(px)
if distance(color, brown) < 50.0:

redness = getRed(px)*1.5
setRed(px, redness)

show(picture)

return(picture)

12

def turnRed():
brown = makeColor(57, 16, 8)
file = r"C:\My Documents\mediasources\barbara.jpg"

picture = makePicture(file)

for px in getPixels(picture):
color = getColor(px)
if distance(color, brown) < 50.0:

redness=getRed(px)*1.5
setRed(px, redness)

show(picture)
return(picture)

Walking through the for loop

• Now, for each pixel px in the picture, we
– Get the color

– See if it’s within a distance of 50 from the brown we
want to make more red

– If so, increase the redness by 50%

How an if works

• if is the command
name

• Next comes an
expression: Some kind
of true or false
comparison

• Then a colon

• Then the body of the
if—the things that will
happen if the
expression is true

if distance(color, brown) < 50.0:

redness = getRed(px)*1.5

blueness = getBlue(px)

greenness = getGreen(px)

13

Expressions

• Can test equality with ==

• Can also test <, >, >=, <=, <> (not equals)

• In general, 0 is false, 1 is true

– So you can have a function return a “true” or
“false” value.

Bug alert!

= means “make them equal!”

== means “are they equal?”

Expressions

• Can use and and or inside the expression

we are testing in the if statement

red = getRed(px)
if (distance(color, brown) < 50.0) and (red > 200):

redness = red * 1.5

setRed(px, redness)

red = getRed(px)
if (distance(color, brown) < 50.0) or (red > 200):

redness = red * 1.5
setRed(px, redness)

14

if distance(color, brown) < 50.0:

redness = getRed(px)*1.5

setRed(px, redness)

show(picture)

return(picture)

Returning from a function

• At the end, we show and return the picture

• Why are we using return?

– Because the picture is created within the function

– If we didn’t return it, we couldn’t get at it in the

command area

• We could print the result, but we’d more likely
assign it a name

Things to change

• Lower the threshold to get more pixels

– But if it’s too low, you start messing with the
wood behind her

• Increase the amount of redness

– But if you go too high, you can go beyond the
range of valid color intensities (i.e. more than
255)

15

Replacing colors using if
• We don’t have to do one-to-one changes or

replacements of color

• We can use if to decide if we want to make a
change.
– We could look for a range of colors, or one specific

color.

– We could use an operation (like multiplication) to set
the new color, or we can set it to a specific value.

• It all depends on the effect that we want.

Experiment!

Posterizing:
Reducing the range of colors

16

Posterizing: How we do it

• We look for a range of colors, then map
them to a single color.
– If red is between 63 and 128, set it to 95

– If green is less than 64, set it to 31

– ...

• This requires many if statements, but the
idea is pretty simple.

• The end result is that many colors, get
reduced to a few colors

Posterizing function
def posterize(picture):

#loop through the pixels

for p in getPixels(picture):

#get the RGB values

red = getRed(p)

green = getGreen(p)

blue = getBlue(p)

#check and set red values

if(red < 64):

setRed(p, 31)

if(red > 63 and red < 128):

setRed(p, 95)

if(red > 127 and red < 192):

setRed(p, 159)

if(red > 191 and red < 256):

setRed(p, 223)

#check and set green values

if(green < 64):

setGreen(p, 31)

if(green > 63 and green < 128):

setGreen(p, 95)

if(green > 127 and green < 192):

setGreen(p, 159)

if(green > 191 and green < 256):

setGreen(p, 223)

#check and set blue values

if(blue < 64):

setBlue(p, 31)

if(blue > 63 and blue < 128):

setBlue(p, 95)

if(blue > 127 and blue < 192):

setBlue(p, 159)

if(blue > 191 and blue < 256):

setBlue(p, 223)

17

What’s with this “#” stuff?

• Any line that starts with # is ignored by

Python.

• This allows you to insert comments: Notes
to yourself (or another programmer) that

explain what’s going on here.

– When programs get longer, and have lots of
separate parts, it gets hard to figure out from
the code alone what each piece does.

– Comments can help explain the big picture.

Generating sepia-toned prints

• Pictures that are sepia-toned have a

brownish tint to them that we associate

with older photographs.

• It’s not just a matter of increasing the

amount of brown in the picture, because

it’s not a one-to-one correspondence.

– Instead, colors in different ranges get

converted to other colors.

– We can create such conversions using if

18

Example of sepia-toned prints

Here’s how we do it

def sepiaTint(picture):
#Convert image to greyscale

grayScaleNew(picture)

#loop through picture to tint pixels

for p in getPixels(picture):
red = getRed(p)

blue = getBlue(p)

#tint shadows
if (red < 63):

red = red*1.1
blue = blue*0.9

#tint midtones
if (red > 62 and red < 192):

red = red*1.15
blue = blue*0.85

#tint highlights
if (red > 191):

red = red*1.08
if (red > 255):

red = 255
blue = blue*0.93

#set the new color values
setBlue(p, blue)
setRed(p, red)Bug alert!

Make sure you indent the right amount

19

What’s going on here?
• First, we’re calling grayScaleNew (the one with

weights).
– It’s perfectly okay to have one function calling another.

• We then manipulate the red (increasing) and the blue
(decreasing) channels to bring out more yellows and
oranges.

– Why are we doing the comparisons on the red?

– Why not? After grayscale conversion, all channels are the
same!

– Why these values?

– Trial-and-error: Twiddling the values until it looks the way that
you want

Reviewing:
All the Programming We’ve Seen

• Assigning names to values with =

• Printing with print

• Looping with for

• Testing with if

• Defining functions with def
– Making a real function with parameters uses ()

– Making a real function with an output uses return

• Using functions to create programs (recipes)
and executing them

