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Manipulating Pixels by Range 

and More on Functions

Remember that pixels are in a 
matrix

• Matrices have two dimensions: A height and a 
width

• We can reference any element in the matrix with 
(x,y) or (horizontal, vertical)

– We refer to those coordinates as index numbers or 

indices

• We sometimes want to know where a pixel is, 

and getPixels doesn’t let us know that

– Not to mention the bug that leaves out the first row 

and column
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Tuning our color replacement

• If you want to get more of Barb’s hair, just 

increasing the threshold doesn’t work

– Wood behind becomes within the threshold 
value

• How could we do it better?

– Lower our threshold, but then miss some of 
the hair

– Work only within a range…

Introducing the function range

• Range returns a sequence between its 

first two inputs, possibly using a third input 

as the increment

>>> print range(1,4)

[1, 2, 3]

>>> print range(-1,3)

[-1, 0, 1, 2]

>>> print range(1,10,2)

[1, 3, 5, 7, 9]
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That thing in [] is a sequence

>>> a=[1,2,3]

>>> print a

[1, 2, 3]

>>> a = a + 4

An attempt was made to call a 

function with a parameter of an 

invalid type

>>> a = a + [4]

>>> print a

[1, 2, 3, 4]

>>> a[0]

1

We can assign names to 

sequences, print them, 

add sequences, and 

access individual pieces 

of them.

We can also use for

loops to process each 

element of a sequence.

We can use range to generate 
index numbers

• We’ll do this by working the range 

from 1 to the height, and 1 to the 

width

• But we’ll need more than one loop.

– Each for loop can only change one 
variable,

and we need two for a matrix
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Working the pixels by number

• To use range, we’ll have to use nested 

loops

– One to walk the width, the other to walk the 
height def increaseRed2(picture):

for x in range(1, getWidth(picture)):

for y in range(1, getHeight(picture)):

px = getPixel(picture,x,y)

value = getRed(px)

setRed(px, value*1.1)

Bug Alert:

Be sure to watch your blocks carefully!
Missing any pixels?

What’s going on here?

def increaseRed2(picture):

for x in range(1,getWidth(picture)):

for y in range(1,getHeight(picture)):

px = getPixel(picture,x,y)

value = getRed(px)

setRed(px,value*1.1)

The first time 

through the first 

loop, x is the name 

for 1.

We’ll be processing 

the first column of 

pixels in the picture.
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Now, the inner loop

Next, we set y to 1.  

We’re now going to 

process each of the 

pixels in column 1.

def increaseRed2(picture):

for x in range(1,getWidth(picture)):

for y in range(1,getHeight(picture)):

px = getPixel(picture,x,y)

value = getRed(px)

setRed(px,value*1.1)

Process a pixel

With x = 1 and y = 

1, we get the 

leftmost pixel and 

increase its red by 

10%

def increaseRed2(picture):

for x in range(1,getWidth(picture)):

for y in range(1,getHeight(picture)):

px = getPixel(picture,x,y)

value = getRed(px)

setRed(px,value*1.1)
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Next pixel

Next we set y to 2 (next 

value in the sequence 

range(1,getHeight(picture))

def increaseRed2(picture):

for x in range(1, getWidth(picture)):

for y in range(1, getHeight(picture)):

px = getPixel(picture,x,y)

value = getRed(px)

setRed(px,value*1.1)

Process pixel (1,2)

x is still 1, and now y is 

2, so increase the red 

for pixel (1,2)

We continue along this way, with y taking on 

every value from 1 to the height of the 

picture.

def increaseRed2(picture):

for x in range(1, getWidth(picture)):

for y in range(1, getHeight(picture)):

px = getPixel(picture, x, y)

value = getRed(px)

setRed(px,value*1.1)
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Finally, next column

Now that we’re done with 

the loop for y, we get back 

to the for loop for x.

x now takes on the value 2, 

and we go back to the y loop 

to process all the pixels in 

the column x=2.

def increaseRed2(picture):

for x in range(1, getWidth(picture)):

for y in range(1, getHeight(picture)):

px = getPixel(picture, x, y)

value = getRed(px)

setRed(px,value*1.1)

Replacing colors
in a range

def turnRedInRange():

brown = makeColor(57,16,8)

file=r"C\Documents\mediasources\barbara.jpg"

picture=makePicture(file)

for x in range(70,168):

for y in range(56,190):

px=getPixel(picture,x,y)

color = getColor(px)

if distance(color,brown)<50.0:

redness=getRed(px)*1.5

setRed(px,redness)

show(picture)

return(picture)

Get the range 

using 

MediaTools
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Walking this code
• Like last time:

– Don’t need input

– same color we want to change

– same file

• make a picture

def turnRedInRange():

brown = makeColor(57,16,8)

file=r"C\Documents\mediasources\barbara.jpg"

picture=makePicture(file)

for x in range(70,168):

for y in range(56,190):

px=getPixel(picture,x,y)

color = getColor(px)

if distance(color,brown)<50.0:

redness=getRed(px)*1.5

setRed(px,redness)

show(picture)

return(picture)

The nested loop

• Used MediaTools to find the rectangle 

where most of the hair is that we want to 

change 
def turnRedInRange():

brown = makeColor(57,16,8)

file=r"C\Documents\mediasources\barbara.jpg"

picture=makePicture(file)

for x in range(70,168):

for y in range(56,190):

px=getPixel(picture,x,y)

color = getColor(px)

if distance(color,brown)<50.0:

redness=getRed(px)*1.5

setRed(px,redness)

show(picture)

return(picture)
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Scanning for brown hair

def turnRedInRange():

brown = makeColor(57,16,8)

file=r"C\Documents\mediasources\barbara.jpg"

picture=makePicture(file)

for x in range(70,168):

for y in range(56,190):

px=getPixel(picture,x,y)

color = getColor(px)

if distance(color, brown) < 50.0:

redness=getRed(px)*1.5

setRed(px,redness)

show(picture)

return(picture)

• We’re looking for a close-match on hair 

color, and increasing the redness

Similar to scanning whole picture

We could raise threshold now.

(Why?…)

Could we do this without 
nested loops?

• Yes, but 

only with a 

complicated 

if statement

• Moral:

Nested 

loops are 

common for 

2D data

def turnRedInRange2():

brown = makeColor(57,16,8)

file=r"C:\Documents \mediasources\barbara.jpg"

picture=makePicture(file)

for p in getPixels(picture):

x = getX(p)

y = getY(p)

if x >= 70 and x < 168:

if y >=56 and y < 190:
color = getColor(p)

if distance(color,brown)<100.0:

redness=getRed(p)*2.0

setRed(p,redness)

show(picture)

return picture 



10

Review and more on Functions

• How can we reuse variable names like 

picture in both a function and in the 

Command Area?

• Why do we write the functions like this?  

Would other ways be just as good?

• Is there such a thing as a better or worse 

function?

• Why don’t we just build in calls to 
pickAFile and makePicture?

One and only one thing

• We write functions as we do to make them 
general and reusable
– Programmers hate to have to rewrite 

something they’ve written before

– They write functions in a general way so that 
they can be used in many circumstances.

• What makes a function general and thus 
reusable?
– A reusable function does One and Only One 

Thing
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Compare these two programs

def makeSunset(picture):

for p in getPixels(picture):

value=getBlue(p)

setBlue(p, value*0.7)

value=getGreen(p)

setGreen(p, value*0.7)

def makeSunset(picture):

reduceBlue(picture)

reduceGreen(picture)

def reduceBlue(picture):

for p in getPixels(picture):

value=getBlue(p)

setBlue(p, value*0.7)

def reduceGreen(picture):

for p in getPixels(picture):

value = getGreen(p)

setGreen(p, value*0.7)

Yes, they do exactly the 

same thing!

makeSunset(somepict) has 

the same effect in both 

cases

Observations on the new 
makeSunset

• It’s normal to have more 
than one function in the 
same Program Area 
(and file)

• makeSunset in this one 
is somewhat easier to 
read.
– It’s clear what it does 

“reduceBlue” and 
“reduceGreen”

– That’s important!Programs are read by people, not computers!

def makeSunset(picture):

reduceBlue(picture)

reduceGreen(picture)

def reduceBlue(picture):

for p in getPixels(picture):

value = getBlue(p)

setBlue(p, value*0.7)

def reduceGreen(picture):

for p in getPixels(picture):

value = getGreen(p)

setGreen(p, value*0.7)
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Considering variations

• We can only do this because 
reduceBlue and 
reduceGreen, do one and 

only one thing.

• If we put pickAFile and 
makePicture in them, we’d 
have to pick a file twice 
(better be the same file), 
make the picture—then save 
the picture so that the next 
one could get it!

def makeSunset(picture):

reduceBlue(picture)

reduceGreen(picture)

def reduceBlue(picture):

for p in getPixels(picture):

value = getBlue(p)

setBlue(p, value*0.7)

def reduceGreen(picture):

for p in getPixels(picture):

value = getGreen(p)

setGreen(p, value*0.7)

Does makeSunset do one and only 
one thing?

• Yes, but it’s a higher-level, more abstract thing.

– It’s built on lower-level one and only one thing

• We call this hierarchical decomposition.

– You have some thing that you want the computer to 

do?

– Redefine that thing in terms of smaller things

– Repeat until you know how to write the smaller things

– Then write the larger things in terms of the smaller 

things.
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What happens when we use a 
function

• When we type in the Command Area

>>> makeSunset(picture)

Whatever object that is in the Command Area variable 
picture becomes the value of the placeholder (input) 
variable picture in

def makeSunset(picture):

reduceBlue(picture)

reduceGreen(picture)

makeSunset’s picture is then passed as input to 
reduceBlue and reduceGreen, but their input variables 
are completely different from makeSunset’s picture.
– For the life of the functions, they are the same values (picture 

objects)

Names have contexts

• In natural language, the same word has different 
meanings depending on context.
– Time flies like an arrow

– Fruit flies like a banana

• A function is its own context.
– Input variables (placeholders) take on the value of the 

input values only for the life of the function
• Only while it’s executing

– Variables defined within a function also only exist 
within the context of that function

– The context of a function is also called its scope
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Parameters are placeholders

• Think of the input variable, i.e. parameter, 
as a placeholder
– It takes the place of the input object

• During the time that the function is 
executing, the placeholder variable stands 
for the input object.

• When we modify the placeholder by 
changing its pixels with setRed, we 
actually change the input object.

Input variables as placeholders 
(example)

• Imagine we have a 

wedding computer

def marry(husband, wife):

sayVows(husband)

sayVows(wife)

pronounce(husband, wife)

kiss(husband, wife)

def sayVows(speaker):

print "I, " + speaker + " blah blah"

def pronounce(man, woman):

print "I now pronounce you…"

def kiss(p1, p2):

if p1 == p2:

print "narcissism!"

if p1 <> p2:

print p1 + " kisses " + p2
>> marry("Tom Cruise","Katie Holmes")
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Variables within functions stay
within functions

• The variable value in 
decreaseRed is created within
the scope of decreaseRed
– That means that it only exists while 

decreaseRed is executing

• If we tried to print value after 
running decreaseRed, it would 
work ONLY if we already had a 
variable defined in the Command 
Area
– The name value within decreaseRed

doesn’t exist outside of that function

– We call that a local variable

def decreaseRed(picture):

for p in getPixels(picture):

value = getRed(p)

setRed(p, value*0.5)

Writing real functions

• Functions in the mathematics sense take input 
and usually return output.

– Like ord(character) or makePicture(file)

• What if you create something inside a function 
that you do want to get back to the Command 

Area?  

– You can return it

def computeAverage(num1, num2, num3):

ave = (num1 + num2 + num3) / 3

return ave

>> x = computeAverage(10,20,30)
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Consider these two functions

def decreaseRed(picture):

for p in getPixels(picture):

value = getRed(p)

setRed(p, value*0.5)

def decreaseRed(picture, amount):

for p in getPixels(picture):

value = getRed(p)

setRed(p, value * amount)

• It is common to have multiple inputs to a function.

• The new decreaseRed now takes an input of the multiplier for the 

red value.

• decreaseRed(picture, 0.5) would do the same thing

• decreaseRed(picture, 1.25) would increase red 25%

Names are important

• This function should 
probably be called 
changeRed because 
that’s what it does.

• Is it more general?
– Yes.

• But is it the one and 
only one thing that 
you need done?
– If not, then it may be 

less understandable.

– You can be too 
general

def decreaseRed(picture, amount):

for p in getPixels(picture):

value = getRed(p)

setRed(p, value*amount)

def changeRed(picture, amount):

for p in getPixels(picture):

value = getRed(p)

setRed(p, value * amount)
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Always make the program easy to 
understand first

• Write your functions so that you can understand them 

first

– Get your program running

• ONLY THEN should you try to make them better

– Make them more understandable to other people

• Another programmer (or you in six months) may not remember or be

thinking about increase/decrease functions

– Make them more efficient

• The new version of makeSunset i.e. the one with reduceBlue and 

reduceGreen) takes twice as long as the first version, because it 

changes all the pixels twice

• But it’s easier to understand and to get working in the first place

Removing “Red Eye”

• When the flash of the 

camera catches the eye 
just right (especially with 

light colored eyes), we 

get bounce back from the 

back of the retina.

• This results in “red eye”

• We can replace the “red”

with a color of our 

choosing.

• Find where the eyes are 
(x, y) using MediaTools
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Removing Red Eye

def removeRedEye(pic, startX, startY, endX, endY, 
replacementColor):

red = makeColor(255, 0, 0)

for x in range(startX, endX):

for y in range(startY, endY):

currentPixel = getPixel(pic, x, y)

if (distance(red, getColor(currentPixel)) < 165):

setColor(currentPixel, replacementColor)

What we’re doing here:

• Within the rectangle of pixels (startX, startY) to (endX, endY)

• Find pixels close to red, then replace them with a new color 

replacementColor

Why use a range? 

Because we don’t 

want to replace her 

red dress!

By specifying 

bounds of eye as 

parameters makes 

this work on any 

picture

“Fixing” it: Changing red to black

removeRedEye(jenny, 109, 91, 202, 107, 
makeColor(0,0,0))

• Jenny’s eyes are actually not black

– could fix that

• Eye are also not mono-color

– A better function would handle

gradations of red and replace

with gradations of the correct

eye color
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If you know where the pixels are: 
Mirroring

• Imagine a mirror horizontally across the 

picture,

or vertically

• What would we see?

• How do generate that digitally?

– We simply copy the colors of pixels from one 
place to another

Mirroring a picture

• Slicing a picture down the middle and sticking a mirror 

on the slice

• Do it by using a loop to measure an offset

– The index variable is actually measuring an offset from the mirror 

point

• Then reference to either side of the mirror point using the 

offset
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Recipe for mirroring

def mirrorVertical(source):

mirrorpoint = int(getWidth(source) / 2)

for y in range(1, getHeight(source)):

for xOffset in range(1, mirrorpoint):

pright = getPixel(source, xOffset + mirrorpoint, y)

pleft = getPixel(source, mirrorpoint - xOffset, y)

c = getColor(pleft)

setColor(pright, c)

How does it work?

• Compute the half-way horizontal index

• The y value travels the height of the picture

• The xOffset value is an offset

– It’s not actually an index

– It’s the amount to add or subtract

• We copy the color at mirrorpoint - offset to mirrorpoint + offset

def mirrorVertical(source):

mirrorpoint = int(getWidth(source) / 2)

for y in range(1, getHeight(source)):

for xOffset in range(1, mirrorpoint):

pright = getPixel(source, xOffset + mirrorpoint, y)

pleft = getPixel(source, mirrorpoint - xOffset, y)

c = getColor(pleft)

setColor(pright, c)

int converts value in 

parens to integer (2.5 

becomes 2)
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Can we do this with a horizontal 
mirror?

def mirrorHorizontal(source):

mirrorpoint = int(getHeight(source) / 2)

for yOffset in range(1, mirrorpoint):

for x in range(1, getWidth(source)):

pbottom = getPixel(source, x, yOffset + mirrorpoint)

ptop = getPixel(source, x , mirrorpoint - yOffset)

setColor(pbottom, getColor(ptop))

Of course!
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What if we wanted to copy bottom 
to top?

• Very simple: Swap the order of pixels in the 
bottom line

def mirrorHorizontal(source):

mirrorpoint = int(getHeight(source) / 2)

for yOffset in range(1, mirrorpoint):

for x in range(1, getWidth(source)):

pbottom = getPixel(source, x, yOffset + mirrorpoint)

ptop = getPixel(source, x , mirrorpoint - yOffset)

setColor(ptop, getColor(pbottom))

setColor(pbottom, getColor(ptop))

Set color this way, instead of this

Doing correction with mirroring

• Mirroring can be used to 

create interesting effects, 
but it can also be used to 

create realistic effects.

• Consider this image that 

M.G. took on a trip to 

Athens, Greece.

– Can we “repair” the temple 

by mirroring the complete 

part onto the broken part?
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Figuring out where to mirror

• Use MediaTools to find the mirror point and the 
range that we want to copy

Writing a function for specific file

• The function to mirror the temple needs to work 
for one and only one file.

• But we still don’t want to write out the whole 
path.

– setMediaPath() allows us to pick a directory where 

our media will be stored.

– getMediaPath(filename) will generate the entire path 

for us to the filename in the media directory

– THIS ONLY WORKS WHEN WE’RE ACCESSING 

FILES IN THE MEDIA DIRECTORY AND WHERE 

WE HAVE SET THE PATH FIRST DURING OUR 

SESSION WITH JES!
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Program to mirror the temple

def mirrorTemple():
source = makePicture(getMediaPath("temple.jpg"))
mirrorpoint = 277
lengthToCopy = mirrorpoint - 14
for x in range(1, lengthToCopy):

for y in range(28, 98):
p1 = getPixel(source, mirrorpoint - x, y)
p2 = getPixel(source, mirrorpoint + x, y)
setColor(p2, getColor(p1))

return source

Did it really work?

• It clearly did the 
mirroring, but that 
doesn’t create a 

100% realistic image.

• Check out the 
shadows: Which 
direction is the sun 
coming from?


