
1

Manipulating Pixels by Range

and More on Functions

Remember that pixels are in a
matrix

• Matrices have two dimensions: A height and a
width

• We can reference any element in the matrix with
(x,y) or (horizontal, vertical)

– We refer to those coordinates as index numbers or

indices

• We sometimes want to know where a pixel is,

and getPixels doesn’t let us know that

– Not to mention the bug that leaves out the first row

and column

2

Tuning our color replacement

• If you want to get more of Barb’s hair, just

increasing the threshold doesn’t work

– Wood behind becomes within the threshold
value

• How could we do it better?

– Lower our threshold, but then miss some of
the hair

– Work only within a range…

Introducing the function range

• Range returns a sequence between its

first two inputs, possibly using a third input

as the increment

>>> print range(1,4)

[1, 2, 3]

>>> print range(-1,3)

[-1, 0, 1, 2]

>>> print range(1,10,2)

[1, 3, 5, 7, 9]

3

That thing in [] is a sequence

>>> a=[1,2,3]

>>> print a

[1, 2, 3]

>>> a = a + 4

An attempt was made to call a

function with a parameter of an

invalid type

>>> a = a + [4]

>>> print a

[1, 2, 3, 4]

>>> a[0]

1

We can assign names to

sequences, print them,

add sequences, and

access individual pieces

of them.

We can also use for

loops to process each

element of a sequence.

We can use range to generate
index numbers

• We’ll do this by working the range

from 1 to the height, and 1 to the

width

• But we’ll need more than one loop.

– Each for loop can only change one
variable,

and we need two for a matrix

4

Working the pixels by number

• To use range, we’ll have to use nested

loops

– One to walk the width, the other to walk the
height def increaseRed2(picture):

for x in range(1, getWidth(picture)):

for y in range(1, getHeight(picture)):

px = getPixel(picture,x,y)

value = getRed(px)

setRed(px, value*1.1)

Bug Alert:

Be sure to watch your blocks carefully!
Missing any pixels?

What’s going on here?

def increaseRed2(picture):

for x in range(1,getWidth(picture)):

for y in range(1,getHeight(picture)):

px = getPixel(picture,x,y)

value = getRed(px)

setRed(px,value*1.1)

The first time

through the first

loop, x is the name

for 1.

We’ll be processing

the first column of

pixels in the picture.

5

Now, the inner loop

Next, we set y to 1.

We’re now going to

process each of the

pixels in column 1.

def increaseRed2(picture):

for x in range(1,getWidth(picture)):

for y in range(1,getHeight(picture)):

px = getPixel(picture,x,y)

value = getRed(px)

setRed(px,value*1.1)

Process a pixel

With x = 1 and y =

1, we get the

leftmost pixel and

increase its red by

10%

def increaseRed2(picture):

for x in range(1,getWidth(picture)):

for y in range(1,getHeight(picture)):

px = getPixel(picture,x,y)

value = getRed(px)

setRed(px,value*1.1)

6

Next pixel

Next we set y to 2 (next

value in the sequence

range(1,getHeight(picture))

def increaseRed2(picture):

for x in range(1, getWidth(picture)):

for y in range(1, getHeight(picture)):

px = getPixel(picture,x,y)

value = getRed(px)

setRed(px,value*1.1)

Process pixel (1,2)

x is still 1, and now y is

2, so increase the red

for pixel (1,2)

We continue along this way, with y taking on

every value from 1 to the height of the

picture.

def increaseRed2(picture):

for x in range(1, getWidth(picture)):

for y in range(1, getHeight(picture)):

px = getPixel(picture, x, y)

value = getRed(px)

setRed(px,value*1.1)

7

Finally, next column

Now that we’re done with

the loop for y, we get back

to the for loop for x.

x now takes on the value 2,

and we go back to the y loop

to process all the pixels in

the column x=2.

def increaseRed2(picture):

for x in range(1, getWidth(picture)):

for y in range(1, getHeight(picture)):

px = getPixel(picture, x, y)

value = getRed(px)

setRed(px,value*1.1)

Replacing colors
in a range

def turnRedInRange():

brown = makeColor(57,16,8)

file=r"C\Documents\mediasources\barbara.jpg"

picture=makePicture(file)

for x in range(70,168):

for y in range(56,190):

px=getPixel(picture,x,y)

color = getColor(px)

if distance(color,brown)<50.0:

redness=getRed(px)*1.5

setRed(px,redness)

show(picture)

return(picture)

Get the range

using

MediaTools

8

Walking this code
• Like last time:

– Don’t need input

– same color we want to change

– same file

• make a picture

def turnRedInRange():

brown = makeColor(57,16,8)

file=r"C\Documents\mediasources\barbara.jpg"

picture=makePicture(file)

for x in range(70,168):

for y in range(56,190):

px=getPixel(picture,x,y)

color = getColor(px)

if distance(color,brown)<50.0:

redness=getRed(px)*1.5

setRed(px,redness)

show(picture)

return(picture)

The nested loop

• Used MediaTools to find the rectangle

where most of the hair is that we want to

change
def turnRedInRange():

brown = makeColor(57,16,8)

file=r"C\Documents\mediasources\barbara.jpg"

picture=makePicture(file)

for x in range(70,168):

for y in range(56,190):

px=getPixel(picture,x,y)

color = getColor(px)

if distance(color,brown)<50.0:

redness=getRed(px)*1.5

setRed(px,redness)

show(picture)

return(picture)

9

Scanning for brown hair

def turnRedInRange():

brown = makeColor(57,16,8)

file=r"C\Documents\mediasources\barbara.jpg"

picture=makePicture(file)

for x in range(70,168):

for y in range(56,190):

px=getPixel(picture,x,y)

color = getColor(px)

if distance(color, brown) < 50.0:

redness=getRed(px)*1.5

setRed(px,redness)

show(picture)

return(picture)

• We’re looking for a close-match on hair

color, and increasing the redness

Similar to scanning whole picture

We could raise threshold now.

(Why?…)

Could we do this without
nested loops?

• Yes, but

only with a

complicated

if statement

• Moral:

Nested

loops are

common for

2D data

def turnRedInRange2():

brown = makeColor(57,16,8)

file=r"C:\Documents \mediasources\barbara.jpg"

picture=makePicture(file)

for p in getPixels(picture):

x = getX(p)

y = getY(p)

if x >= 70 and x < 168:

if y >=56 and y < 190:
color = getColor(p)

if distance(color,brown)<100.0:

redness=getRed(p)*2.0

setRed(p,redness)

show(picture)

return picture

10

Review and more on Functions

• How can we reuse variable names like

picture in both a function and in the

Command Area?

• Why do we write the functions like this?

Would other ways be just as good?

• Is there such a thing as a better or worse

function?

• Why don’t we just build in calls to
pickAFile and makePicture?

One and only one thing

• We write functions as we do to make them
general and reusable
– Programmers hate to have to rewrite

something they’ve written before

– They write functions in a general way so that
they can be used in many circumstances.

• What makes a function general and thus
reusable?
– A reusable function does One and Only One

Thing

11

Compare these two programs

def makeSunset(picture):

for p in getPixels(picture):

value=getBlue(p)

setBlue(p, value*0.7)

value=getGreen(p)

setGreen(p, value*0.7)

def makeSunset(picture):

reduceBlue(picture)

reduceGreen(picture)

def reduceBlue(picture):

for p in getPixels(picture):

value=getBlue(p)

setBlue(p, value*0.7)

def reduceGreen(picture):

for p in getPixels(picture):

value = getGreen(p)

setGreen(p, value*0.7)

Yes, they do exactly the

same thing!

makeSunset(somepict) has

the same effect in both

cases

Observations on the new
makeSunset

• It’s normal to have more
than one function in the
same Program Area
(and file)

• makeSunset in this one
is somewhat easier to
read.
– It’s clear what it does

“reduceBlue” and
“reduceGreen”

– That’s important!Programs are read by people, not computers!

def makeSunset(picture):

reduceBlue(picture)

reduceGreen(picture)

def reduceBlue(picture):

for p in getPixels(picture):

value = getBlue(p)

setBlue(p, value*0.7)

def reduceGreen(picture):

for p in getPixels(picture):

value = getGreen(p)

setGreen(p, value*0.7)

12

Considering variations

• We can only do this because
reduceBlue and
reduceGreen, do one and

only one thing.

• If we put pickAFile and
makePicture in them, we’d
have to pick a file twice
(better be the same file),
make the picture—then save
the picture so that the next
one could get it!

def makeSunset(picture):

reduceBlue(picture)

reduceGreen(picture)

def reduceBlue(picture):

for p in getPixels(picture):

value = getBlue(p)

setBlue(p, value*0.7)

def reduceGreen(picture):

for p in getPixels(picture):

value = getGreen(p)

setGreen(p, value*0.7)

Does makeSunset do one and only
one thing?

• Yes, but it’s a higher-level, more abstract thing.

– It’s built on lower-level one and only one thing

• We call this hierarchical decomposition.

– You have some thing that you want the computer to

do?

– Redefine that thing in terms of smaller things

– Repeat until you know how to write the smaller things

– Then write the larger things in terms of the smaller

things.

13

What happens when we use a
function

• When we type in the Command Area

>>> makeSunset(picture)

Whatever object that is in the Command Area variable
picture becomes the value of the placeholder (input)
variable picture in

def makeSunset(picture):

reduceBlue(picture)

reduceGreen(picture)

makeSunset’s picture is then passed as input to
reduceBlue and reduceGreen, but their input variables
are completely different from makeSunset’s picture.
– For the life of the functions, they are the same values (picture

objects)

Names have contexts

• In natural language, the same word has different
meanings depending on context.
– Time flies like an arrow

– Fruit flies like a banana

• A function is its own context.
– Input variables (placeholders) take on the value of the

input values only for the life of the function
• Only while it’s executing

– Variables defined within a function also only exist
within the context of that function

– The context of a function is also called its scope

14

Parameters are placeholders

• Think of the input variable, i.e. parameter,
as a placeholder
– It takes the place of the input object

• During the time that the function is
executing, the placeholder variable stands
for the input object.

• When we modify the placeholder by
changing its pixels with setRed, we
actually change the input object.

Input variables as placeholders
(example)

• Imagine we have a

wedding computer

def marry(husband, wife):

sayVows(husband)

sayVows(wife)

pronounce(husband, wife)

kiss(husband, wife)

def sayVows(speaker):

print "I, " + speaker + " blah blah"

def pronounce(man, woman):

print "I now pronounce you…"

def kiss(p1, p2):

if p1 == p2:

print "narcissism!"

if p1 <> p2:

print p1 + " kisses " + p2
>> marry("Tom Cruise","Katie Holmes")

15

Variables within functions stay
within functions

• The variable value in
decreaseRed is created within
the scope of decreaseRed
– That means that it only exists while

decreaseRed is executing

• If we tried to print value after
running decreaseRed, it would
work ONLY if we already had a
variable defined in the Command
Area
– The name value within decreaseRed

doesn’t exist outside of that function

– We call that a local variable

def decreaseRed(picture):

for p in getPixels(picture):

value = getRed(p)

setRed(p, value*0.5)

Writing real functions

• Functions in the mathematics sense take input
and usually return output.

– Like ord(character) or makePicture(file)

• What if you create something inside a function
that you do want to get back to the Command

Area?

– You can return it

def computeAverage(num1, num2, num3):

ave = (num1 + num2 + num3) / 3

return ave

>> x = computeAverage(10,20,30)

16

Consider these two functions

def decreaseRed(picture):

for p in getPixels(picture):

value = getRed(p)

setRed(p, value*0.5)

def decreaseRed(picture, amount):

for p in getPixels(picture):

value = getRed(p)

setRed(p, value * amount)

• It is common to have multiple inputs to a function.

• The new decreaseRed now takes an input of the multiplier for the

red value.

• decreaseRed(picture, 0.5) would do the same thing

• decreaseRed(picture, 1.25) would increase red 25%

Names are important

• This function should
probably be called
changeRed because
that’s what it does.

• Is it more general?
– Yes.

• But is it the one and
only one thing that
you need done?
– If not, then it may be

less understandable.

– You can be too
general

def decreaseRed(picture, amount):

for p in getPixels(picture):

value = getRed(p)

setRed(p, value*amount)

def changeRed(picture, amount):

for p in getPixels(picture):

value = getRed(p)

setRed(p, value * amount)

17

Always make the program easy to
understand first

• Write your functions so that you can understand them

first

– Get your program running

• ONLY THEN should you try to make them better

– Make them more understandable to other people

• Another programmer (or you in six months) may not remember or be

thinking about increase/decrease functions

– Make them more efficient

• The new version of makeSunset i.e. the one with reduceBlue and

reduceGreen) takes twice as long as the first version, because it

changes all the pixels twice

• But it’s easier to understand and to get working in the first place

Removing “Red Eye”

• When the flash of the

camera catches the eye
just right (especially with

light colored eyes), we

get bounce back from the

back of the retina.

• This results in “red eye”

• We can replace the “red”

with a color of our

choosing.

• Find where the eyes are
(x, y) using MediaTools

18

Removing Red Eye

def removeRedEye(pic, startX, startY, endX, endY,
replacementColor):

red = makeColor(255, 0, 0)

for x in range(startX, endX):

for y in range(startY, endY):

currentPixel = getPixel(pic, x, y)

if (distance(red, getColor(currentPixel)) < 165):

setColor(currentPixel, replacementColor)

What we’re doing here:

• Within the rectangle of pixels (startX, startY) to (endX, endY)

• Find pixels close to red, then replace them with a new color

replacementColor

Why use a range?

Because we don’t

want to replace her

red dress!

By specifying

bounds of eye as

parameters makes

this work on any

picture

“Fixing” it: Changing red to black

removeRedEye(jenny, 109, 91, 202, 107,
makeColor(0,0,0))

• Jenny’s eyes are actually not black

– could fix that

• Eye are also not mono-color

– A better function would handle

gradations of red and replace

with gradations of the correct

eye color

19

If you know where the pixels are:
Mirroring

• Imagine a mirror horizontally across the

picture,

or vertically

• What would we see?

• How do generate that digitally?

– We simply copy the colors of pixels from one
place to another

Mirroring a picture

• Slicing a picture down the middle and sticking a mirror

on the slice

• Do it by using a loop to measure an offset

– The index variable is actually measuring an offset from the mirror

point

• Then reference to either side of the mirror point using the

offset

20

Recipe for mirroring

def mirrorVertical(source):

mirrorpoint = int(getWidth(source) / 2)

for y in range(1, getHeight(source)):

for xOffset in range(1, mirrorpoint):

pright = getPixel(source, xOffset + mirrorpoint, y)

pleft = getPixel(source, mirrorpoint - xOffset, y)

c = getColor(pleft)

setColor(pright, c)

How does it work?

• Compute the half-way horizontal index

• The y value travels the height of the picture

• The xOffset value is an offset

– It’s not actually an index

– It’s the amount to add or subtract

• We copy the color at mirrorpoint - offset to mirrorpoint + offset

def mirrorVertical(source):

mirrorpoint = int(getWidth(source) / 2)

for y in range(1, getHeight(source)):

for xOffset in range(1, mirrorpoint):

pright = getPixel(source, xOffset + mirrorpoint, y)

pleft = getPixel(source, mirrorpoint - xOffset, y)

c = getColor(pleft)

setColor(pright, c)

int converts value in

parens to integer (2.5

becomes 2)

21

Can we do this with a horizontal
mirror?

def mirrorHorizontal(source):

mirrorpoint = int(getHeight(source) / 2)

for yOffset in range(1, mirrorpoint):

for x in range(1, getWidth(source)):

pbottom = getPixel(source, x, yOffset + mirrorpoint)

ptop = getPixel(source, x , mirrorpoint - yOffset)

setColor(pbottom, getColor(ptop))

Of course!

22

What if we wanted to copy bottom
to top?

• Very simple: Swap the order of pixels in the
bottom line

def mirrorHorizontal(source):

mirrorpoint = int(getHeight(source) / 2)

for yOffset in range(1, mirrorpoint):

for x in range(1, getWidth(source)):

pbottom = getPixel(source, x, yOffset + mirrorpoint)

ptop = getPixel(source, x , mirrorpoint - yOffset)

setColor(ptop, getColor(pbottom))

setColor(pbottom, getColor(ptop))

Set color this way, instead of this

Doing correction with mirroring

• Mirroring can be used to

create interesting effects,
but it can also be used to

create realistic effects.

• Consider this image that

M.G. took on a trip to

Athens, Greece.

– Can we “repair” the temple

by mirroring the complete

part onto the broken part?

23

Figuring out where to mirror

• Use MediaTools to find the mirror point and the
range that we want to copy

Writing a function for specific file

• The function to mirror the temple needs to work
for one and only one file.

• But we still don’t want to write out the whole
path.

– setMediaPath() allows us to pick a directory where

our media will be stored.

– getMediaPath(filename) will generate the entire path

for us to the filename in the media directory

– THIS ONLY WORKS WHEN WE’RE ACCESSING

FILES IN THE MEDIA DIRECTORY AND WHERE

WE HAVE SET THE PATH FIRST DURING OUR

SESSION WITH JES!

24

Program to mirror the temple

def mirrorTemple():
source = makePicture(getMediaPath("temple.jpg"))
mirrorpoint = 277
lengthToCopy = mirrorpoint - 14
for x in range(1, lengthToCopy):

for y in range(28, 98):
p1 = getPixel(source, mirrorpoint - x, y)
p2 = getPixel(source, mirrorpoint + x, y)
setColor(p2, getColor(p1))

return source

Did it really work?

• It clearly did the
mirroring, but that
doesn’t create a

100% realistic image.

• Check out the
shadows: Which
direction is the sun
coming from?

