
1

Program Design and

Debugging

How do programmers start?

• How do you get started with a program?

• “Programming is all about debugging a

blank piece of paper.” – Gerald Sussman

2

Top-down method

• Figure out what has to be done.

– These are called the requirements

• Refine the requirements until they

describe, in English, what needs to be

done in the program.

– Keep refining until you know how to write the
program code for each statement in English.

• Step-by-step, convert the English

requirements into program code.

Top-down Example

• Write a function called pay that takes in as input
a number of hours worked and the hourly rate to
be paid. Compute the gross pay as the hours
times the rate. But then compute a taxable
amount.

• If the pay is< 100, charge a tax of 0.25
• If the pay is >= 100 and < 300, tax rate is 0.35
• If the pay is >=300 and < 400, tax rate is 0.45
• If the pay is >= 400, tax rate is 0.50

• Print the gross pay and the net pay (gross –
taxable amount).

3

Top-down Example:
Refine into steps you can code

• Write a function called pay that takes in as input
a number of hours worked and the hourly rate to
be paid.

• Compute the gross pay as the hours times the
rate.

• If the pay is< 100, charge a tax of 0.25
• If the pay is >= 100 and < 300, tax rate is 0.35
• If the pay is >=300 and < 400, tax rate is 0.45

• If the pay is >= 400, tax rate is 0.50
• Compute a taxable amount as tax rate * gross
• Print the gross pay and the net pay (gross –

taxable amount).

Convert to program code

• √Write a function called pay that
takes in as input a number of
hours worked and the hourly rate
to be paid.

• Compute the gross pay as the
hours times the rate.

• If the pay is< 100, charge a tax of
0.25

• If the pay is >= 100 and < 300, tax
rate is 0.35

• If the pay is >=300 and < 400, tax
rate is 0.45

• If the pay is >= 400, tax rate is
0.50

• Compute a taxable amount as tax
rate * gross

• Print the gross pay and the net
pay (gross – taxable amount).

def pay(hours,rate):

4

Convert to program code

• √Write a function called pay that
takes in as input a number of
hours worked and the hourly rate
to be paid.

• √ Compute the gross pay as the
hours times the rate.

• If the pay is< 100, charge a tax of
0.25

• If the pay is >= 100 and < 300, tax
rate is 0.35

• If the pay is >=300 and < 400, tax
rate is 0.45

• If the pay is >= 400, tax rate is
0.50

• Compute a taxable amount as tax
rate * gross

• Print the gross pay and the net
pay (gross – taxable amount).

def pay(hours,rate):

gross = hours * rate

Convert to program code

• √Write a function called pay that
takes in as input a number of
hours worked and the hourly rate
to be paid.

• √ Compute the gross pay as the
hours times the rate.

• √ If the pay is< 100, charge a tax
of 0.25

• If the pay is >= 100 and < 300, tax
rate is 0.35

• If the pay is >=300 and < 400, tax
rate is 0.45

• If the pay is >= 400, tax rate is
0.50

• Compute a taxable amount as tax
rate * gross

• Print the gross pay and the net
pay (gross – taxable amount).

def pay(hours,rate):

gross = hours * rate

if pay < 100:

tax = 0.25

5

Convert to program code

• √Write a function called pay that
takes in as input a number of
hours worked and the hourly rate
to be paid.

• √ Compute the gross pay as the
hours times the rate.

• √ If the pay is< 100, charge a tax
of 0.25

• √ If the pay is >= 100 and < 300,
tax rate is 0.35

• √ If the pay is >=300 and < 400,
tax rate is 0.45

• √ If the pay is >= 400, tax rate is
0.50

• Compute a taxable amount as tax
rate * gross

• Print the gross pay and the net
pay (gross – taxable amount).

def pay(hours,rate):

gross = hours * rate

if pay < 100:

tax = 0.25

if 100 <= pay < 300:

tax = 0.35

if 300 <= pay < 400:

tax = 0.45

if pay >= 400:

tax = 0.50

Convert to program code

• √Write a function called pay that
takes in as input a number of
hours worked and the hourly rate
to be paid.

• √ Compute the gross pay as the
hours times the rate.

• √ If the pay is< 100, charge a tax
of 0.25

• √ If the pay is >= 100 and < 300,
tax rate is 0.35

• √ If the pay is >=300 and < 400,
tax rate is 0.45

• √ If the pay is >= 400, tax rate is
0.50

• √ Compute a taxable amount as
tax rate * gross

• Print the gross pay and the net
pay (gross – taxable amount).

def pay(hours,rate):

gross = hours * rate

if pay < 100:

tax = 0.25

if 100 <= pay < 300:

tax = 0.35

if 300 <= pay < 400:

tax = 0.45

if pay >= 400:

tax = 0.50

taxableAmount = gross * tax

6

Convert to program code

• √Write a function called pay that
takes in as input a number of
hours worked and the hourly rate
to be paid.

• √ Compute the gross pay as the
hours times the rate.

• √ If the pay is< 100, charge a tax
of 0.25

• √ If the pay is >= 100 and < 300,
tax rate is 0.35

• √ If the pay is >=300 and < 400,
tax rate is 0.45

• √ If the pay is >= 400, tax rate is
0.50

• √ Compute a taxable amount as
tax rate * gross

• √ Print the gross pay and the net
pay (gross – taxable amount).

def pay(hours,rate):

gross = hours * rate

if pay < 100:

tax = 0.25

if 100 <= pay < 300:

tax = 0.35

if 300 <= pay < 400:

tax = 0.45

if pay >= 400:

tax = 0.50

taxableAmount = gross * tax

print “Gross pay:”,gross

print “Net pay:”,gross-
taxableAmount

Why “top-down”?

• We start from the highest level of
abstraction
– The requirements

• And work our way down to the most
specificity
– To the code

• The opposite is “bottom-up”

• Top-down is the most common way that
professionals design.
– It provides a well-defined process and can be

tested throughout.

7

What’s “bottom-up”?

• Start with what you know, and keep

adding to it until you’ve got your program.

• You frequently refer to programs you
know.

– Frankly, you’re looking for as many pieces
you can steal as possible!

Background subtraction

• Let’s say that you have a picture of

someone, and a picture of the same place

(same background) without the someone

there, could you subtract out the

background and leave the picture of the
person?

• Maybe even change the background?

• Let’s take that as our problem!

8

Person (Katie) and Background

Bottom-up:
Where do we start?

• What we most need to do is to figure out

whether the pixel in the Person shot is the

same as the in the Background shot.

• Will they be the EXACT same color?

Probably not.

• So, we’ll need some way of figuring out if

two colors are close…

9

Remember this?

def turnRed():

brown = makeColor(57,16,8)

file = r“c:\mediasources\barbara.jpg"

picture=makePicture(file)

for px in getPixels(picture):

color = getColor(px)

if distance(color,brown)<50.0:

redness=getRed(px)*1.5

setRed(px,redness)

show(picture)

return(picture)

Original:

Using distance

• So we know that we want to ask:
if distance(personColor,bgColor) > someValue

• And what do we then?

– We want to grab the color from another
background (a new background) at the same
point.

– Do we have any examples of doing that?

10

Copying Barb to a canvas

def copyBarb():

Set up the source and target pictures

barbf=getMediaPath("barbara.jpg")

barb = makePicture(barbf)

canvasf = getMediaPath("7inX95in.jpg")

canvas = makePicture(canvasf)

Now, do the actual copying

targetX = 1

for sourceX in range(1,getWidth(barb)):

targetY = 1

for sourceY in range(1,getHeight(barb)):

color = getColor(getPixel(barb,sourceX,sourceY))

setColor(getPixel(canvas,targetX,targetY), color)

targetY = targetY + 1

targetX = targetX + 1

show(barb)

show(canvas)

return canvas

Where we are so far:

if distance(personColor,bgColor) > someValue:

bgcolor = getColor(getPixel(newBg,x,y))

setColor(getPixel(person,x,y), bgcolor)

• What else do we need?

– We need to get all these variables set up

• We need to input a person picture, a background (background

without person), and a new background.

• We need a loop where x and y are the right values

• We have to figure out personColor and bgColor

11

Swap a background using
background subtraction

def swapbg(person, bg, newbg):

if distance(personColor,bgColor) > someValue:

bgcolor = getColor(getPixel(newbg,x,y))

setColor(getPixel(person,x,y), bgcolor)

Swap a background using
background subtraction

def swapbg(person, bg, newbg):

for x in range(1,getWidth(person)):

for y in range(1,getHeight(person)):

personPixel = getPixel(person,x,y)

bgpx = getPixel(bg,x,y)

personColor= getColor(personPixel)

bgColor = getColor(bgpx)

if distance(personColor,bgColor) > someValue:

bgcolor = getColor(getPixel(newbg,x,y))

setColor(getPixel(person,x,y), bgcolor)

12

Simplifying a little,
and specifying a little

def swapbg(person, bg, newbg):

for x in range(1,getWidth(person)):

for y in range(1,getHeight(person)):

personPixel = getPixel(person,x,y)

bgpx = getPixel(bg,x,y)

personColor= getColor(personPixel)

bgColor = getColor(bgpx)

if distance(personColor,bgColor) > 10:

bgcolor = getColor(getPixel(newbg,x,y))

setColor(personPixel, bgcolor)

Trying it with a jungle background

13

What happened?

• It looks like we reversed the swap

– If the distance is great, we want to KEEP the
pixel.

– If the distance is small (it’s basically the same
thing), we want to get the NEW pixel.

Reversing the swap

def swapbg(person, bg, newbg):

for x in range(1,getWidth(person)):

for y in range(1,getHeight(person)):

personPixel = getPixel(person,x,y)

bgpx = getPixel(bg,x,y)

personColor= getColor(personPixel)

bgColor = getColor(bgpx)

if distance(personColor,bgColor) < 10:

bgcolor = getColor(getPixel(newbg,x,y))

setColor(personPixel, bgcolor)

14

Better!

But why isn’t it a lot better?

• We’ve got places
where we got pixels
swapped that we
didn’t want to swap
– See Katie’s shirt

stripes

• We’ve got places
where we want pixels
swapped, but didn’t
get them swapped
– See where Katie made

a shadow

15

How could we make it better?

• What could we change in the program?
– We could change the threshold “someValue”

– If we increase it, we get fewer pixels matching
• That won’t help with the shadow

– If we decrease it, we get more pixels
matching

• That won’t help with the stripe

• What could we change in the pictures?
– Take them in better light, less shadow

– Make sure that the person isn’t wearing
clothes near the background colors.

Side trip:
This is Debugging, too!

• Debugging is figuring out what your program is doing,
what you want it to do, and how to get it from where you
are to where you want it to be.

• When you get error messages, that’s the easy kind of
debugging!
– You know that you just have to figure out what Python is

complaining about, and change it so that Python doesn’t
complain anymore!

• The harder kind is when the program works, but you still
don’t know why it’s not doing what you want.

• First step in any debugging: Figure out what the
program is doing!
– This is true if you have errors or not.

– If you have errors, the issues are:

• Why did it work up to there?

• What are the values of the variables at that point?

16

How to understand a program

• Step 1: Walk the program
– Figure out what every line is doing, and

what every variable’s value is.

– At least, do this for the lines that are confusing to you.

• Step 2: Run the program
– Does it do what you think it’s doing?

• Step 3: Check the program
– Insert print statements to figure out what values are

what in the program

– You can also use print statements to print out values
to figure out how IF’s are working.

How to understand a program

• Use the command area!
– Type commands to check on values, to see how

functions work.

– Use showVars() to help, too.

• Step 4: Change the program
– Now, change the program in some interesting way

• Instead of all pixels, do only the pixels in part of the picture

– Run the program again. Can you see the effect of
your change?

– If you can change the program and understand why
your change did what it did, you understand the
program

17

Running/Debugging Example

• Function to convert temperature from

Fahrenheit to Celsius using the formula:

9

)32(5 −

=

F
C

def fahrenheitToCelsius(fahrenheit):

celsius = (5 / 9) * (fahrenheit - 32)

return celsius

Debugging Example

def fahrenheitToCelsius(fahrenheit):

celsius = (5 / 9) * (fahrenheit - 32)

return celsius

1. Mentally walk through the program

2. Try it!

>> print fahrenheitToCelsius(100)

0

3. Use print statements to try to track down the error

18

Debugging Example

def fahrenheitToCelsius(fahrenheit):

#Comment out original line of code

#celsius = (5 / 9) * (fahrenheit - 32)

conversionFactor = 5 / 9

tempF = (fahrenheit – 32)

print "Fahrenheit – 32 = " , tempF

print "Conversion = " , conversionFactor

celsius = conversionFactor * tempF

print "Celsius = ", celsius

return celsius

Debugging Run

>>> print fahrenheitToCelsius(100)
Fahrenheit - 32 = 68
Conversion = 0

Celsius = 0
0

By examining the result of the print statements we have now identified

the precise location of the bug.

The conversion factor is not computed correctly. Since we are setting

the conversion factor to 5 / 9 this instructs the compiler to compute the

division of two integers, which results in zero.

Fix: Force floating point division by using 5.0 / 9

19

Using the Watcher

• It can be a hassle to add lots of print
statements and then remove them

• An alternate technique is to use the
Watcher
– The watcher lets you see which lines are

running and when.

– You can add variables to see their values.

– You can change the speed of the program.
• Faster program execution means fewer updates in

the Watcher.

Using the Watcher

• Click on the “Watcher” button

• Add the names of any variables you want
to watch

• Run your program and the values of the
variables will show in the Watcher window
line by line

20

Modified Program with Bug

def fahrenheitToCelsius(fahrenheit):

#Comment out original line of code

#celsius = (5 / 9) * (fahrenheit - 32)

conversionFactor = 5 / 9

tempF = (fahrenheit - 32)

celsius = conversionFactor * tempF

return celsius

Stepping, Stopping

• Useful in loops to watch variables

21

Debugging

• It takes some time getting used to the

Watcher, but the time spent will pay off in

time saved later

• At a minimum, get used to debugging

programs using print statements

Designing and Debugging

• Most important hint on designing: Start

from previous programs!

– The best designers don’t start from scratch.

• Most important hint on debugging:

Understand your program.

– Know what each line is doing.

– Know what you meant for each line to be
doing.

– Try lots of examples.

