
1

Speed

CS A109

Big speed differences

• Many of the techniques we’ve learned take
no time at all in other applications

• Select a figure in Word.
– It’s automatically inverted as fast as you can

highlight it.

• Color changes in Photoshop happen as
you change the slider
– Increase or decrease red? Move it and see it

happen just as fast as you can move the
slider.

2

Where does the speed go?

• Is it that Photoshop is so fast?

• Or that Jython is so slow?

• It’s some of both—it’s not a simple

problem with an obvious answer.

• Let's consider an issue:

– How fast can computers get?

What a computer really
understands

• Computers really do not understand

Python, nor Java, nor any other language.

• The basic computer only understands one
kind of language: machine language.

– instructions to the computer expressed in
terms of values in bytes

– tell the computer to do very low-level activities

E.g.: Code to ADD might be 1001 . To add 1+0
and then 1+1 our program might look like this:
1001 0001 0000
1001 0001 0001

3

Assembler and machine language

• Machine language looks just like a bunch

of numbers.

• Assembler language is a set of words that
corresponds to the machine language.

– It’s a one-to-one relationship.

– A word of assembler equals one machine
language instruction, typically.

• (Often, just a single byte.)

Each kind of processor has its own
machine language

• Apple computers
(used to) use CPU
chips called G4 or G5

• Computers running
Microsoft Windows
may use Pentium
processors.

• There are other
processors called
Alpha, LSI-11, and on
and on.

Each processor understands only its own machine language

4

Assembler instructions

• Assembler instructions tell the computer to

do things like:

– Load numbers particular memory locations
into special locations (variables) in the
computer

• These special locations are called registers

– Store numbers into particular memory
locations or into special locations (variables)

in the computer.

– Test numbers for equality, greater-than, or
less-than.

– Add numbers together, or subtract them.

An example assembly language
program

LOAD #10,R0 ; Load special variable R0 with 10

LOAD #12,R1 ; Load special variable R1 with 12

SUM R0,R1 ; Add special variables R0 and R1

STOR R1,#45 ; Store the result into memory

location #45

Recall that we talked about memory as a long series of

mailboxes in a mailroom.

Each one has a number (like #45).

The above is equivalent to Python’s: b = 10 + 12

5

Assembler -> Machine

LOAD 10,R0 ; Load special variable R0 with 10

LOAD 12,R1 ; Load special variable R1 with 12

SUM R0,R1 ; Add special variables R0 and R1

STOR R1,#45 ; Store the result into memory location #45

Might appear in memory as just 12 bytes:

01 00 10

01 01 12

02 00 01

03 01 45

Another Example

• LOAD R1,#65536 ; Get a character from keyboard

• TEST R1,#13 ; Is it an ASCII 13 (Enter)?

• JUMPTRUE #32768 ; If true, go to another part of the program

• CALL #16384 ; If false, call func. to process the new line

Machine Language:

05 01 255 255

10 01 13

20 127 255

122 63 255

6

Devices are (often) also just memory

• A computer can interact with external devices
(like displays, microphones, and speakers) in
lots of ways.

• Easiest way to understand it (and is often the
actual way it’s implemented) is to think about
external devices as corresponding to a memory
location.
– Store a 255 into memory location 65542, and

suddenly the red component of the pixel at (101,345)
on your screen is set to maximum intensity.

– Everytime the computer reads memory location
897784, it’s a new sample just read from the
microphone.

• So the simple loads and stores handle
multimedia, too.

Machine language is executed very
quickly

• A mid-range laptop these days has a clock
rate of 1.5 Gigahertz.

• What that means exactly is hard to
explain,
but let’s interpret it as processing 1.5
billion bytes per second.

• Those 12 bytes would execute inside the
computer, then, in 12/1,500,000,000th of a
second!

7

Applications are typically compiled

• Applications like Adobe Photoshop and
Microsoft Word are compiled.
– This means that they execute in the computer

as pure machine language.

– They execute at that level speed.

• However, Python, Java, Scheme, and
many other languages are (in many cases)
interpreted.
– They execute at a slower speed.

– Why? It’s the difference between translating
instructions and directly executing
instructions.

An example

• Sample Problem:

Write a function doGraphics that will take a list as input. The function
doGraphics will start by creating a canvas from the 640x480.jpg file in
the mediasources folder. You will draw on the canvas according to the
commands in the input list.

Each element of the list will be a string. There will be two kinds of strings
in the list:

• "b 200 120" means to draw a black dot at x position 200 y position 120.
The numbers, of course, will change, but the command will always be a
"b". You can assume that the input numbers will always have three
digits.

• "l 000 010 100 200" means to draw a line from position (0,10) to position
(100,200)

So an input list might look like: ["b 100 200","b 101 200","b 102 200","l
102 200 102 300"] (but have any number of elements).

8

Sample Solution

def doGraphics(mylist):
canvas =

makePicture(getMediaPath("640x480.jpg"))

for i in mylist:
if i[0] == "b":

x = int(i[2:5])
y = int(i[6:9])
print "Drawing pixel at ",x,":",y

setColor(getPixel(canvas, x,y),black)
if i[0] =="l":

x1 = int(i[2:5])
y1 = int(i[6:9])

x2 = int(i[10:13])
y2 = int(i[14:17])
print "Drawing line at",x1,y1,x2,y2
addLine(canvas, x1, y1, x2, y2)

return canvas

This program

processes each string in

the command list.

If the first character is

“b”, then the x and y

are pulled out, and a

pixel is set to black.

If the first character is

“l”, then the two

coordinates are pulled

out, and the line is

drawn.

Running doGraphics()

>>> canvas=doGraphics(["b

100 200","b 101 200","b
102 200","l 102 200 102

300","l 102 300 200

300"])

Drawing pixel at 100 : 200

Drawing pixel at 101 : 200

Drawing pixel at 102 : 200

Drawing line at 102 200 102

300

Drawing line at 102 300 200
300

>>> show(canvas)

9

We’ve invented a new language

• ["b 100 200","b 101 200","b 102 200","l
102 200 102 300","l 102 300 200 300"] is a
program in a new graphics programming
language.

• Postscript, PDF, Flash, and AutoCAD are
not too dissimilar from this.
– There’s a language that, when interpreted,

“draws” the page, or the Flash animation, or
the CAD drawing.

• But it’s a slow language!

Would this run faster?
Does the exact same thing

def doGraphics():

canvas =
makePicture(getMediaPath("640x480.j
pg"))

setColor(getPixel(canvas,
100,200),black)

setColor(getPixel(canvas,
101,200),black)

setColor(getPixel(canvas,
102,200),black)

addLine(canvas, 102,200,102,300)

addLine(canvas, 102,300,200,300)

show(canvas)

return canvas

10

Which do you think will run faster?

def doGraphics(mylist):
canvas =

makePicture(getMediaPath("640x480.j
pg"))

for i in mylist:
if i[0] == "b":

x = int(i[2:5])
y = int(i[6:9])

print "Drawing pixel at ",x,":",y
setColor(getPixel(canvas, x,y),black)

if i[0] =="l":
x1 = int(i[2:5])
y1 = int(i[6:9])

x2 = int(i[10:13])
y2 = int(i[14:17])
print "Drawing line at",x1,y1,x2,y2
addLine(canvas, x1, y1, x2, y2)

return canvas

def doGraphics():
canvas =

makePicture(getMediaPath("640x480.j
pg"))

setColor(getPixel(canvas,
100,200),black)

setColor(getPixel(canvas,
101,200),black)

setColor(getPixel(canvas,
102,200),black)

addLine(canvas, 102,200,102,300)
addLine(canvas, 102,300,200,300)
show(canvas)
return canvas

Above just draws the picture.

The left one figures out

(interprets) the picture, then

draws it.

Could we generate that second
program?

• What if we could write a function that:
– Takes ["b 100 200","b 101 200","b 102 200","l

102 200 102 300","l 102 300 200 300"]
– Writes a file that is the Python version of that

program.

def doGraphics():
canvas = makePicture(getMediaPath("640x480.jpg"))
setColor(getPixel(canvas, 100,200),black)
setColor(getPixel(canvas, 101,200),black)

setColor(getPixel(canvas, 102,200),black)
addLine(canvas, 102,200,102,300)
addLine(canvas, 102,300,200,300)
show(canvas)
return canvas

11

Introducing a compiler
def makeGraphics(mylist):

file = open("graphics.py","wt")

file.write('def doGraphics():\n')

file.write(' canvas = makePicture(getMediaPath("640x480.jpg"))\n');
for i in mylist:

if i[0] == "b":

x = int(i[2:5])

y = int(i[6:9])
print "Drawing pixel at ",x,":",y

file.write(' setColor(getPixel(canvas, '+str(x)+','+str(y)+'),black)\n')

if i[0] =="l":

x1 = int(i[2:5])

y1 = int(i[6:9])
x2 = int(i[10:13])

y2 = int(i[14:17])

print "Drawing line at",x1,y1,x2,y2

file.write(' addLine(canvas, '+str(x1)+','+str(y1)+','+
str(x2)+','+str(y2)+')\n')

file.write(' show(canvas)\n')
file.write(' return canvas\n')

file.close()

Compilers are amazing

• Think about what that last program does:
– It inputs a program in one language (our mini

l/b graphics language)

– And generates another program in another
language (Python) that does the same thing.

• It’s a program that writes programs!
– Given a specification of a process.

– Create a specification of the same process,
but in another notation.

12

Why do we write programs?

• One reason we write programs is to be

able to do the same thing over-and-over

again, without having to rehash the same

steps in Photoshop each time.

• A compiler makes that re-running the

program a thousand times faster.

Which one leads to shorter time
overall?

• Interpreted version:
– 100 times

• doGraphics(["b 100 200","b 101 200","b 102 200","l 102 200
102 300","l 102 300 200 300"]) involving interpretation and
drawing each time.

• Compiled version
– 1 time makeGraphics(["b 100 200","b 101 200","b 102

200","l 102 200 102 300","l 102 300 200 300"])
• Takes as much time (or more) as interpreting.

• But only once

– 100 times running the very small graphics program.

13

Applications are compiled

• Applications like Photoshop and Word are

written in languages like C or C++

– These languages are then compiled down to
machine language.

– That stuff that executes at a rate of 1.5 billion

bytes per second.

• Jython programs are interpreted.

– Actually, they’re interpreted twice!

Java programs typically don’t
compile to machine language.

• Recall that every processor has its own

machine language.

– How, then, can you create a program that
runs on any computer?

• The people who invented Java also

invented a make-believe processor—a

virtual machine.

– It doesn’t exist anywhere.

– Java compiles to run on the virtual machine

• The Java Virtual Machine (JVM)

14

What good is it to run only on a
computer that doesn’t exist?!?

• Machine language is a very simple
language.

• A program that interprets the machine
language of some computer is not hard to
write.

def VMinterpret(program):

for instruction in program:

if instruction == 1: #It's a load

...

if instruction == 2: #It's an add

...

Java runs on everything…

• Everything that has a JVM on it!

• Each computer that can execute Java has
an interpreter for the Java machine
language.
– That interpreter is usually compiled to

machine language, so it’s very fast.

• Interpreting Java machine is pretty easy
– Takes only a small program

• Devices as small as wristwatches can run
Java VM interpreters.

15

Running a Java Program

Public class Foo {

if (e.target=xyz) then

this.hide();

}

Java

compiler

01010001

01010010

Mac Interpreter

PC Interpreter

PalmPilot Interpreter

Java Program

Java Byte

Code –

Would run on

The Java

Virtual Machine

What happens when you execute a
Python statement in JES

• Your statement (like “show(canvas)”) is first
compiled to Java!
– Really! You’re actually running Java, even though you

wrote Python!

• Then, the Java is compiled into Java virtual
machine language.
– Sometimes appears as a .class or .jar file.

• Then, the virtual machine language is
interpreted by the JVM program.
– Which executes as a machine language program (a

.exe)

16

Is it any wonder that Python
programs in JES are slower?

• Photoshop and Word simply execute.

– At 1.5 Ghz and faster!

• Python programs in JES are compiled,

then compiled, then interpreted.

– Three layers of software before you get down
to the real speed of the computer!

• It only works at all because 1.5 billion is a

REALLY big number!

Why interpret?

• For us, to have a command area.
– Compiled languages don’t typically have a command

area where you can print things and try out functions.
– Interpreted languages help the learner figure out

what’s going on.

• For others, to maintain portability.
– Java can be compiled to machine language.

• In fact, some VMs will actually compile the virtual machine
language for you while running—no special compilation
needed.

– But once you do that, the result can only run on one
kind of computer.

– Programs for Java (.jar files typically) can be moved
from any kind of computer to any other kind of
computer and just work.

– Also good for many web apps, since speed often not
a key requirement

