
1

Slide 1- 1

Chapter

Introduction to Programming

and Visual Basic 2008

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1

2

Computer Hardware

� Refers to the physical components

� Not one device but a system of many devices

� Major types of components include:

� Central Processing Unit

� Main memory

� Secondary storage devices

� Input devices

� Output devices

Slide 1- 3

Organization of a Computer System

Slide 1- 4

Central

Processing

Unit

Main

Memory

Input

Device

Output

Device

Secondary

Storage

3

The CPU

� Fetches instructions from main memory

� Carries out the operations commanded by the

instructions

� Each instruction produces some outcome

� A program is an entire sequence of instructions

� Instructions are stored as binary numbers

� Binary number - a sequence of 1’s and 0’s

Slide 1- 5

Main Memory

� Commonly known as random access memory, or

just RAM

� Holds instructions and data needed for programs

that are currently running

� RAM is usually a volatile type of memory

� Contents of RAM are lost when power is

turned off

� Can visualize memory as a long row of locations

each with a numeric address

Slide 1- 6

4

First-Generation and Second-

Generation (Low-Level) Languages
� Low-level languages

� First-generation and second-generation languages

� Machine-dependent languages

� The underlying representation the machine actually

understands

� First-generation languages

� Also referred to as machine languages

� Consist of a sequence of instructions represented as

binary numbers

� E.g.: Code to ADD might be 1001 . To add 1+0 and

then 1+1 our program might look like this:

� 1001 0001 0000

� 1001 0001 0001 Slide 1- 7

First-Generation and Second-

Generation (Low-Level) Languages
� Second-generation languages

� Also referred to as assembly languages

� Abbreviated words are used to indicate operations

� Allow the use of decimal numbers and labels to

indicate the location of the data

� Assemblers

� Programs that translate assembly language programs

into machine language programs

� Our add program now looks like:

� ADD 1,0

� ADD 1,1

Slide 1- 8

1001

0001

0000

1001

0001

0001

Assembler

5

Third-Generation and Fourth-

Generation (High-Level) Languages

� High-level languages

� Third-generation and fourth-generation languages

� Programs can be translated to run on a variety of

computer types

� Third-generation languages

� Procedure-oriented languages

� Object-oriented languages

� Our Add program might now look like:

sum = value1 + value2

Slide 1- 9

1001

0001

0000

1001

0001

0001

Compiler

Third-Generation and Fourth-

Generation (High-Level) Languages

(Continued)

Slide 1- 10

The Evolution of

Programming

Languages

6

Third-Generation and Fourth-

Generation (High-Level) Languages
� Procedure-oriented languages

� Programmers concentrate on the procedures

used in the program

� Procedure: a logically consistent set of

instructions which is used to produce one

specific result

� Object-oriented languages

� Items are represented using self-contained

objects

� Often used for graphical windows

environments, ability to re-use code efficiently
Slide 1- 11

Example of an Object
� This is a Visual Basic

GUI object called a form

� Contains data and actions

� Data, such as Hourly Pay

Rate, is a text property

that determines the

appearance of form objects

� Actions, such as Calculate Gross Pay, is a method that

determines how the form reacts

� A form is an object that contains other objects such as

buttons, text boxes, and labels

Slide 1- 12

7

Example of an Object

� Form elements are

objects called controls

� This form has:

� Two TextBox controls

� Four Label controls

� Two Button controls

� The value displayed by

a control is held in the text property of the control

� Left button text property is Calculate Gross Pay

� Buttons have methods attached to click events

Slide 1- 13

Third-Generation and Fourth-

Generation (High-Level) Languages

� Graphical user interface (GUI)

� Provides a graphical way for the user to interact with

the program

� Uses events

� Event

� A specific procedure that is connected to an object

� Visual languages

� Permit the programmer to manipulate graphical objects

directly, with the language providing the necessary

code

� Permit users to access and format information without

the need for writing any procedural code
Slide 1- 14

8

The Visual Basic .NET Platform

� Visual Basic .NET is in a sense one step removed from a

typical high-level language

� VB.NET runs using a “Virtual Machine” or “Common

Language Runtime”

� The physical computer simulates a virtual computer

that runs your program

� What is .NET?

� Microsoft’s vision of the future of applications in the

Internet age

� Increased robustness over classic Windows apps

� New programming platform

� Built for the web

� .NET is a platform that runs on the operating system
Slide 1- 15

.NET

� .NET is actually a program that sits on top on the

Operating System

� Provides language interoperability across

platforms

� Strong emphasis on Web connectivity

� Platform/language independent

Slide 1- 16

9

.NET Framework

Slide 1- 17

Framework Class LibraryFramework Class Library

ADO.NET

Network

XML

Security

Threading

Diagnostics

IO

Etc.

Common Language RuntimeCommon Language Runtime

Memory Management Common Type System Lifecycle Monitoring

C# VB.NET C++.NET OtherC# VB.NET C++.NET Other

Operating SystemOperating System

VisualVisual
StudioStudio
.NET.NET

Common Language SpecificationCommon Language Specification

Windows FormsWindows FormsASP.NETASP.NET

Web Services

ASP.NET Application Services

Web Forms ControlsControls Drawing

Windows Application Services

.NET: Language-Independent,

Mostly Platform Specific

Slide 1- 18

Person.vb

Address.cs

Company.cbl

CLR
Person
MSIL

Company
MSILAddress

MSIL

Windows

Windows

Others?

CLR

CLR

CLR

Deploy

(Visual Basic)

(C#)

(Cobol)

10

Programming

� Computers can only follow instructions

� In VB.NET our instructions must sometimes be
very detailed and sometimes can be more
general

� A computer program is a set of instructions on
how to solve a problem or perform a task

� Example:

� In order for a computer to compute
someone’s gross pay, we must tell it to
perform the steps on the following slide

Slide 1- 19

Computing Gross Pay

� Display message: "How many hours did you work?"

� Allow user to enter number of hours worked

� Store the number the user enters in memory

� Display message: "How much are you paid per hour?"

� Allow the user to enter an hourly pay rate

� Store the number the user enters in memory

� Multiply hours worked by pay rate and store the result in
memory

� Display a message with the result of the previous step

This well-defined, ordered set of steps for solving a problem
is called an algorithm

Slide 1- 20

11

More About Controls and

Programming

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1.3

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

As a Visual Basic Programmer, You Must Design and

Create the Two Major Components of an Application:

the GUI Elements (Forms and Other Controls) and the

Programming Statements That Respond to And/or

Perform Actions (Event Procedures)

Visual Basic Controls
� As a Windows user you’re already familiar with

many Visual Basic controls:

� Label - displays text the user cannot change

� TextBox - allows the user to enter text

� Button – performs an action when clicked

� RadioButton - A round button that is selected or

deselected with a mouse click

� CheckBox – A box that is checked or unchecked

with a mouse click

� Form - A window that contains these controls

� Tutorial 1-3 demonstrates these controls

Slide 1- 22

12

VB.NET Controls

� Invoking VB.NET

� Text Box

� Button

� Label

� Radio Button

� Checkbox Button

� Picturebox

� Help

� Fonts / Auto Hide

Slide 1- 23

Follow along and

explore these controls

on your computer!

Name Property

� All controls have properties

� Each property has a value (or values)

� Not all properties deal with appearance

� The name property establishes a means for the
program to refer to that control

� Controls are assigned relatively meaningless
names when created

� Programmers usually change these names to
something more meaningful

Slide 1- 24

13

Naming Conventions

� Control names must start with a letter

� Remaining characters may be letters, digits, or

underscore

� 1st 3 lowercase letters indicate the type of control

� txtG for Text Boxes

� lblG for Labels

� btnG for Buttons

� After that, capitalize the first letter of each word

� txtHoursWorked is clearer than txthoursworked

Slide 1- 25

Examples of Names

Slide 1- 26

btnCalcGrossPay btnClose

txtHoursWorked

txtPayRate

lblGrossPay

Label1

Label2

Label3

� The label controls use the default names (Label1, etc.)

� Text boxes, buttons, and the Gross Pay label play an

active role in the program and have been changed

14

Language Elements
� Keywords: Words with special meaning to Visual Basic

(e.g., Private, Sub)

� Programmer-defined-names: Names created by the
programmer (e.g., sngGrossPay, btnClose)

� Operators: Special symbols to perform common

operations (e.g., +, -, *, and /)

� Remarks: Comments inserted by the programmer – these

are ignored when the program runs (e.g., any text

preceded by a single quote)

Slide 1- 27

Language Elements: Syntax

� Syntax defines the correct use of key words,

operators, & programmer-defined names

� Similar to the syntax (rules) of English that

defines correct use of nouns, verbs, etc.

� A program that violates the rules of syntax will not

run until corrected

Slide 1- 28

15

The Programming Process

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1.4

Step 1 of Developing an Application

� Clearly define what the program is to do

� For example, the Wage Calculator program:

� Purpose: To calculate the user’s gross pay

� Input: Number of hours worked, hourly pay rate

� Process: Multiply number of hours worked by hourly

pay rate (result is the user’s gross pay)

� Output: Display a message indicating the user’s gross

pay

Slide 1- 30

16

Step 2 of Developing an Application

� Visualize the application running on the computer and

design its user interface

Slide 1- 31

Step 3 of Developing an Application

� Make a list of the controls needed

Slide 1- 32

Type �ame Description

TextBox txtHoursWorked Allows the user to enter the number of hours worked.

TextBox txtPayRate Allows the user to enter the hourly pay rate

Label lblGrossPay Displays the gross pay, after the btnCalcGrossPay

button has been clicked

Button btnCalcGrossPay When clicked, multiplies the number of hours worked

by the hourly pay rate

Button btnClose When clicked, terminates the application

Label (default) Description for Number of Hours Worked TextBox

Label (default) Description for Hourly Pay Rate TextBox

Label (default) Description for Gross Pay Earned Label

Form (default) A form to hold these controls

17

Step 4 of Developing an Application

� Define values for each control's relevant properties:

Slide 1- 33

Control Type Control �ame Text

Form (Default) "Wage Calculator"

Label (Default) "Number of Hours Worked"

Label (Default) "Hourly Pay Rate"

Label (Default) "Gross Pay Earned"

Label lblGrossPay "$0.00"

TextBox txtHoursWorked ""

TextBox txtPayRate ""

Button btnCalcGrossPay "Calculate Gross Pay"

Button btnClose "Close"

Step 5 of Developing an Application

� List the methods needed for each control:

Slide 1- 34

Method Description

btnCalcGrossPay_Click Multiplies hours worked by hourly pay rate

These values are entered into the

txtHoursWorked and txtPayRate TextBoxes

Result is stored in lblGrossPay Text property

btnClose_Click Terminates the application

18

Step 6 of Developing an Application

� Create pseudocode or a flowchart of each method:

� Pseudocode is an English-like description in
programming language terms

� A flowchart is a diagram that uses boxes and other
symbols to represent each step

Slide 1- 35

Store Hours Worked x Hourly Pay Rate in sngGrossPay.
Store the value of sngGrossPay in lblGrossPay.Text.

Start End

Multiply hours

worked by

hourly payrate.

Store result in

sngGrossPay.

Copy value in

sngGrossPay

to lblGrossPay

text property

Step 7 of Developing an Application

� Check the code for errors:

� Read the flowchart and/or pseudocode

� Step through each operation as though you are the

computer

� Use a piece of paper to jot down the values of

variables and properties as they change

� Verify that the expected results are achieved

Slide 1- 36

19

Step 8 of Developing an Application

� Use Visual Basic to create the forms and other controls

identified in step 3

� This is the first use of Visual Basic, all of the

previous steps have just been on paper

� In this step you develop the portion of the

application the user will see

Slide 1- 37

Step 9 of Developing an Application

� Use Visual Basic to write the code for the event

procedures and other methods created in step 6

� This is the second step on the computer

� In this step you develop the methods behind the

click event for each button

� Unlike the form developed on step 8, this portion of

the application is invisible to the user

Slide 1- 38

20

Step 10 of Developing an Application

� Attempt to run the application - find syntax errors

� Correct any syntax errors found

� Syntax errors are the incorrect use of an element of

the programming language

� Repeat this step as many times as needed

� All syntax errors must be removed before Visual

Basic will create a program that actually runs

Slide 1- 39

Step 11 of Developing an Application

� Run the application using test data as input

� Run the program with a variety of test data

� Check the results to be sure that they are correct

� Incorrect results are referred to as a runtime error

� Correct any runtime errors found

� Repeat this step as many times as necessary

Slide 1- 40

21

Program Region

Slide 1- 41

IntelliSense

Slide 1- 42

Automatically pops up to give the programmer help.

22

� The GUI environment is event-driven

� An event is an action that takes place within a

program

� Clicking a button (a Click event)

� Keying in a TextBox (a TextChanged event)

� Visual Basic controls are capable of detecting

many, many events

� A program can respond to an event if the

programmer writes an event procedure

Slide 1- 43

Event Driven Programming: Events

Adding Code to an Event

� To add code for an event:

� In the VB Code Window select the control on the left side menu
and the event of interest on the right side menu

� Or double-click the control in the designer to bring up the most
common event for that control

� Other methods for opening the Code window:

� If the Code window is visible, click on it

� Double-click anywhere on the Form window

� Select the Code option from the View menu

� Press the F7 method key anywhere on the design form

� Select the View Code icon from the Project Window

Slide 1- 44

23

Event Procedures - Subroutines

Private Sub objectName_event(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

objectName.event

For now you can ignore most of this, aside from knowing the name of the

subroutine:

Private Sub objectName_event(…) Handles

objectName.event

Slide 1- 45

Structure of an Event Procedure

Private Sub objectName_event(...)

Handles objectName.event

statements ‘ Your code goes here

End Sub

Slide 1- 46

24

The Text Property of a TextBox

� A user can change the text property of a text box

simply by typing in the text box

� A programmer can change the text property of a

text box with an assignment statement

� Uses the form Object.Property just as we did

to change the text property of a label

� The following code assigns the text to the left

of the equal sign to the text property of the text

box txtInput

� txtInput.Text = “Type your name”

Slide 1- 47

Changing the title of the form in code

� The following won't work:

Form1.Text = "Demonstration"

� The current form is referred to by the keyword

Me.

Me.Text = "Demonstration"

Slide 1- 48

25

In-Class Walkthrough

Slide 1- 49

� Create a form with a textbox, button, and label

� Upon clicking the button, store some text in the

label and change the color of the button

In-Class Exercise

� Write a program to do something like this:

Slide 1- 50

26

The Text Property of a TextBox

� We can use the text property of a text box to

retrieve something the user has typed

� The following code assigns the text in txtInput

to the text property of the label lblSet

� lblSet.Text = txtInput.Text

� Once again we use the form Object.Property

� This is the typical means to refer to a property

of any object

Slide 1- 51

Clearing a TextBox

� Can be done with an assignment statement:

� txtInput.Text = ""

� Two adjacent quote marks yields a null string

� So this replaces whatever text was in txtInput
with "nothing" -- a string with no characters

� Can also be done with a method:

� txtInput.Clear()

� Clear is a Method, not a Property

� Methods are actions – as in clearing the text

� Uses the form Object.Method

Slide 1- 52

27

The MessageBox.Show Method

� The MessageBox.Show method is used to display a box
with a message for the user

� The message box also contains a title and an icon

� General forms of the MessageBox.Show method

� MessageBox.Show(text)

� MessageBox.Show(text, caption)

� MessageBox.Show(text, caption, buttons)

� MessageBox.Show(text, caption, buttons, icon)

� MessageBox.Show(text, caption, buttons, icon,
defaultbutton)

� To do: Add a MessageBox.Show to the button click event

� Hard-coded text, textbox.text
Slide 1- 53

Console.WriteLine

� Another handy way to output information is to the

Console:

� Console.WriteLine("Hello there")

� Outputs the message in double quotes and adds a

newline

� Console.Write("Hello again. ")

� Outputs the message in double quotes without a

newline

� Useful for debugging, don’t have to push the OK

button and clutter up the screen with message

boxes
Slide 1- 54

28

Load Event Procedure

� Every form has a Load event procedure

� Automatically executed when the form is

displayed

� Double-click in any empty space on the form

� The code window will appear

� Place the code to be executed between the

Private Sub and End Sub lines

Slide 1- 55

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

' Code to be executed when the Form loads

End Sub

