
File Input and Output

File I/O (Input and Output) is covered in chapter 9. We will only cover sequential text

input and output, which is described in the first half of chapter 9.

Reading Data from a Text File

If you have stored data in a text file, using a program such as Notepad, you can also read

it with VB.NET. Reading from a text file is useful to load the program with large

amounts of data that would otherwise be tedious to type.

Data can be stored in files and accessed with a StreamReader object.

The steps to use the StreamReader object are as follows:

1. Execute a statement of the form

Dim readerVar As IO.StreamReader

A StreamReader is an object from the Input/Output class that can read a stream of

characters coming from a disk or coming over the Internet. The Dim statement declares

the variable readerVar to be of type StreamReader.

2. Execute a statement of the form

readerVar = IO.File.OpenText(filepath)

where filepath identifies the file to be read. This statement establishes a communications

link between the computer and the disk drive for reading data from the disk. Data then

can be input from the specified file and assigned to variables in the program. This

assignment statement is said to “open the file for input.”

Just as with other variables, the declaration and assignment statements in Steps

1 and 2 can be combined into the single statement:

Dim readerVar As IO.StreamReader = IO.File.OpenText(filespec)

3. Read items of data in order, one at a time, from the file with the ReadLine method.

Each datum is retrieved as a string. A statement of the form

strVar = readerVar.ReadLine

causes the program to look in the file for the next unread line of data and assign it to the

variable strVar. The data can be assigned to a numeric variable if it is first converted to a

numeric type with a statement such as

numVar = CDbl(readerVar.ReadLine)

Note: If all the data in a file have been read by ReadLine statements and another item is

requested by a ReadLine statement, the item retrieved will have the value Nothing.

4. After the desired items have been read from the file, terminate the communications

link set in Step 2 with the statement

readerVar.Close()

As an example, a list of foods my 6 year old will eat is stored in the file C:\FOODS.TXT

and it contains the following:

400

300

pizza

cheeseburgers

spaghetti

chicken nuggets

rice with chili

corn

apples

grapes

This says that we would like our program to be displayed with the upper left corner

window at coordinate 400,300. Next is a list of foods he will eat. We would like a

program that reads in this data, positions the window at 400,300, and then outputs all the

foods he will eat into a listbox.

Inside the Form_Load event:

 Dim foodFile As IO.StreamReader =

 IO.File.OpenText("C:\foods.txt")

 Dim x, y As Integer

 Dim s As String

 s = foodFile.ReadLine() ' Read left X coordinate

 x = CInt(s)

 y = CInt(foodFile.ReadLine()) ' Directly read top Y coordinate

 ' Set the window position to x,y

 Me.Top = y

 Me.Left = x

 ' Read in all the foods

 s = foodFile.ReadLine() ' Pizza

 ListBox1.Items.Add(s) ' Add to listbox

 s = foodFile.ReadLine() ' cheeseburger

 ListBox1.Items.Add(s) ' Add to listbox

 s = foodFile.ReadLine() ' spaghetti

 ListBox1.Items.Add(s) ' Add to listbox

 s = foodFile.ReadLine() ' chicken nuggets

 ListBox1.Items.Add(s) ' Add to listbox

 s = foodFile.ReadLine() ' rice with chili

 ListBox1.Items.Add(s) ' Add to listbox

 s = foodFile.ReadLine() ' corn

 ListBox1.Items.Add(s) ' Add to listbox

 s = foodFile.ReadLine() ' applets

 ListBox1.Items.Add(s) ' Add to listbox

 s = foodFile.ReadLine() ' grapes

 ListBox1.Items.Add(s) ' Add to listbox

 foodFile.Close()

The output is:

Note that there is a lot of repeat code. We repeat the same two lines of code to read in the

name of each item and add it to the listbox. We could improve this code by using a loop

that continued until we reached the end of the file. The function:

 filevar.Peek

returns -1 when we have reached the end of the file, and the ASCII code of the next

character otherwise. Here is the simpler code:

 Dim foodFile As IO.StreamReader =

 IO.File.OpenText("C:\foods.txt")

 Dim x, y As Integer

 Dim s As String

 s = foodFile.ReadLine() ' Read left X coordinate

 x = CInt(s)

 y = CInt(foodFile.ReadLine()) ' Directly read top Y coordinate

 ' Set the window position to x,y

 Me.Top = y

 Me.Left = x

 ' Read in all the foods

 Do While (foodFile.Peek <> -1)

 s = foodFile.ReadLine() ' Read a food

 ListBox1.Items.Add(s) ' Add it to the listbox

 Loop

 foodFile.Close()

Here is another example that reads in words from a dictionary file to solve this word

puzzle: "Name a common word, besides tremendous, stupendous and horrendous, that

ends in dous."

We can solve this problem by loading up a file of words and checking each one to see if:

1) It is more than 4 letters long

2) The word contains “dous” at the end

Assume we have a file of English words located at C:\WORDS.TXT

 Dim wordFile As IO.StreamReader = IO.File.OpenText("C:\WORDS.TXT")

 Dim s As String

 Do While (wordFile.Peek <> -1)

 s = wordFile.ReadLine()

 If s.Length > 4 Then

 If s.EndsWith("dous") Then

 Console.WriteLine(s)

 End If

 End If

 Loop

 wordFile.Close() ' Close the file

Writing To Sequential Text Files

Here we’ll cover just the very basics of how to write and create a text file from your

program.

Creating a text file is a lot like opening a file for reading, except we open it for creation

instead. The steps to create a new text file and write data to it are:

1. Create an IO.StreamWriter object:

Dim swriter As IO.StreamWriter = IO.File.CreateText(pathOnDisk)

This will create a blank file with the given pathname. If the file already exists, it

will be destroyed! (There is a separate function, IO.File.AppendText, that will

open a file but append to the end of it instead of destroying the file). Note the

similarities to opening a file, which was IO.File.OpenText(pathOnDisk)

If we don’t specify a full path then by default the file is placed in the current

working directory (the bin directory of the project, if running from visual studio)

2. To place data in the file, use WriteLine, as we have used to write data to the

console, except precede it by the Stream Writer variable:

swriter.WriteLine(data)

3. When you are done recording data to the file, close it:

swriter.Close()

The close statement breaks the link with the file on disk and frees up space in memory.

Note that in most cases output will not actually be stored into the file until the Close

statement is executed, so if you are checking the file contents to see what it is in, make

sure the file is closed before you look at it.

Here is an example that would “hello there” and the number 42 to disk:

 Dim sw As IO.StreamWriter = IO.File.CreateText("c:\test.txt")

 sw.WriteLine("hello there")

 sw.WriteLine(40 + 2)

 sw.Close()

