
4/14/2009

1

Introduction to SQL, OleDB

interface to Access from VB.NET

SQL

• Structured Query Language, abbreviated SQL

– Usually pronounced “sequel” but also “ess-cue-

ell”)

– The common language of client/server database

management systems.

– Standardized – you can use a common set of SQL

statements with all SQL-compliant systems.

– Defined by E.F. Codd at IBM research in 1970.

– Based on relational algebra and predicate logic

4/14/2009

2

SQL Data Retrieval

• Given an existing database, the SELECT

statement is the basic statement for data

retrieval.

– Both simple and complex, and it may be combined

with other functions for greater flexibility.

SELECT data_element1 [, {data_element2 | function(..)}] Or *
FROM table_1, [, table_2, …]
[WHERE condition_1 [, {not, or, and} condition_2]]
[GROUP BY data_1, …]
[HAVING aggregate function(…)…]
[ORDER BY data1, …]

SELECT statement

• Some sample aggregate functions:
– COUNT(*) SUM(item)

– AVG(item) MAX(item)

– MIN(item)

• Conditional Operators
– = Equal

– < Less than

– > Greater than

– <>,!= Not equal to

– <= Less than or equal to

– >= Greater than or equal to

4/14/2009

3

SELECT Examples

• Select every row, column from the table:
– SELECT * FROM Orders;

– SELECT Orders.cust_id, Orders.prod_id, Orders.cost,

Orders.salesperson

FROM Orders;

• Returns a set of all rows that match the query

SELECT

• If a table has spaces or certain punctuation in

it, then Access needs to have the items

enclosed in square brackets []. The previous

query is identical to the following:

– SELECT [orders].[cust_id], orders.prod_id,

orders.cost, orders.[salesperson]

FROM Orders;

4/14/2009

4

SELECT Query in Access
• Can flip back and forth between SQL View,

Run, and Design Mode

SQL

Run

Design

More SELECT Statements

• Note that we can have duplicates as a result of the selection. If we want
to remove duplicates, we can use the DISTINCT clause:

SELECT DISTINCT Orders.cust_id

FROM Orders;

• We can combine a selection and a projection by using the WHERE clause:

SELECT Orders.cust_id

FROM Orders

WHERE Salesperson = “Jones”;

• This could be used if we wanted to get all the customers that Jones has
sold to, in this case, CUST_ID=101 and CUST_ID=100. By default, Access is
not case-sensitive, so “jones” would also result in the same table.

4/14/2009

5

More SELECT
• We can further refine the query by adding AND , OR, or NOT conditions. If

we want orders from Jones or from Smith then the query becomes:

SELECT Orders.cust_id

FROM Orders

WHERE Salesperson = “Jones” or Salesperson = “Smith”;

• Another refinement is to use the BETWEEN operator. If we want only

those orders between 10 and 100 then we could define this as:

SELECT Orders.cust_id, Orders.cost

FROM Orders

WHERE Orders.cost >10 and Orders.cost <100;

• Or use the between operator:

SELECT Orders.cust_id, Orders.cost

FROM Orders

WHERE Orders.cost BETWEEN 10 and 100;

• Finally, we might want to sort the data on some field. We can use the ORDER BY

clause:

SELECT Orders.cust_id, Orders.cost

FROM Orders

WHERE Orders.cost >10 and Orders.cost <100

ORDER BY Orders.cost;

• This sorts the data in ascending order of cost. An example is shown in the table:

CUST_ID COST

102 15

100 20

101 30

• If we wanted to sort them in descending order, use the DESC keyword:

SELECT Orders.cust_id, Orders.cost

FROM Orders

WHERE Orders.cost >10 and Orders.cost <100

ORDER BY Orders.cost DESC;

More SELECT

4/14/2009

6

Joining Data from Multiple Tables

• If our data is in multiple tables we can join them

together in one query.

– Use a JOIN operator (Access default w/Design view)

– Add tables to the FROM, WHERE section (what we will use

here)

• Say we have the following table in addition to

Orders:

Multiple Tables

SELECT Orders.cust_id, Customer.Cust_Name

FROM Orders, Customer

WHERE Orders.cost >10 and Orders.cost <100;

• What do you expect from this query?

Result:

100 Thomas Jefferson

101 Thomas Jefferson

102 Thomas Jefferson

100 Bill Clinton

101 Bill Clinton

102 Bill Clinton

100 George Bush

101 George Bush

102 George Bush

PRODUCT of two tables!

4/14/2009

7

Multiple Tables

• Need to link the tables by their common field,

the customer ID:
SELECT Orders.cust_id, Customer.Cust_Name

FROM Orders, Customer

WHERE Orders.cust_id = Customer.Cust_Id and

Orders.cost >10 and Orders.cost <100;

Result:

100 Thomas Jefferson

101 Bill Clinton

102 George Bush

INSERT command

• Allows you to insert single or multiple rows of

data into a table

• INSERT INTO table [(column-list)] [VALUES

(value-list) | sql-query]

4/14/2009

8

INSERT examples

Given mytable(field1 as currency, field2 as text, field3 as integer):

INSERT INTO mytable (field1, field2, field3)

VALUES (12.10, “bah”,20);

Adds a new row to the table mytable

If you don’t specify every field then fields left out get the default:

INSERT INTO mytable (field1, field2) VALUES(24.2, “zot”);

Adds only for field1 and field2.

INSERT Examples

INSERT INTO ORDERS (CUST_ID, PROD_ID, COST, SALESPESON)

VALUES (103, ‘Y338’, 55, ‘Smith’);

INSERT INTO ORDERS (PROD_ID, COST, SALESPESON)

VALUES (‘Y638’, 155, ‘Smith’);

Second might be useful if the CUST_ID is an autonumber field

4/14/2009

9

DELETE

• Delete will remove a row from the table.

• DELETE FROM table_name [WHERE search-

condition]

Examples:

DELETE FROM mytable1;

Removes all rows!

DELETE FROM mytable1 WHERE field1 > 100;

Removes only rows with field1>100

UPDATE
• Update lets you modify the contents of the data.

UPDATE table_name

SET field_name = expression [, field-name=expression …]

[WHERE search-condition]

UPDATE mytable SET field1 = 0.0;

Changes all field1’s to zero for every row!

UPDATE mytable SET field1 = 0.0, field2 = “woof”;

Sets field1 to 0 and field2 to woof for all rows!

If this is a violation, access will prevent it from happening

UPDATE mytable SET field1 = 25.0 WHERE field2=“foo”;

Only updates the field where field2 is “foo”

4/14/2009

10

SQL Queries

• There are a lot more queries, but that should

give you an idea of what is possible and how it

is done

• Next we’ll go over an example that uses SQL

on an Access Database from VB.NET

– Uses OleDB which is different from the book

– Database access technology changes rapidly

OleDB in VB.NET

• Add to the top:

Imports System.Data.OleDb

• Set the connection string:

– This tells VB.NET where the database is and how to
connect to it:

Public Class Form1

Dim connectionString As String

Private Sub Form1_Load(. . .) Handles MyBase.Load

connectionString = "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\Path\To\database.accdb"

End Sub

For Office 2007

4/14/2009

11

Example Reading from the DB

Dim cn As New OleDbConnection(connectionString)

cn.Open()

Dim cmd As New OleDbCommand("SELECT * From Students WHERE Lastname >= 'M'", cn)

cmd.ExecuteNonQuery()

Dim reader As OleDbDataReader = cmd.ExecuteReader()

While (reader.Read())

Dim ID As Integer = Convert.ToInt32(reader("ID"))

Dim Name As String = Convert.ToString(reader("LastName"))

Dim DOB As Date = Convert.ToDateTime(reader("DOB"))

Console.WriteLine(ID.ToString() + " " + Name + " " + DOB.ToString())

End While

cn.Close()

Example Writing to the DB

Dim cn As New OleDbConnection(connectionString)

cn.Open()

Dim newLastName As String = "Washington“

' ID is auto-update field so its left out of the insert

' Put single quotes around String fields, # around dates

Dim sql As String = "INSERT INTO Students (LastName, FirstName, DOB, Address) " + _

"VALUES ('" + newLastName + "', 'George', #04/19/2005#, '999 C St.')“

Dim cmd As New OleDbCommand(sql, cn)

cmd.ExecuteNonQuery()

Console.WriteLine("Executed command " + sql)

cn.Close()

