
Additional Controls, Scope, Random �umbers, and Making Decisions

CS111

In this lecture we will briefly examine a few new controls and how to make if-then-else
statements. The textbook covers most of these in chapter 4.

Combo Box

The Combo Box control is like a textbox with a pull-down menu of choices. We can
access the user’s selection with:

 comboBox.Text

We can add to the items just like with a listbox:

 comboBox.Items.Add(newItem)

(Short demo in class)

Group Box Control

The group box is used to group related sets of controls for visual effect. To use it, drag
the group box onto the form. Then drag any new controls into the group box. The new
controls will now be “part” of the group box.

The group box can be used to create different sets of radio buttons (upcoming).

(Short demo in class)

Check Box Control

The checkbox is a small box that can be checked or unchecked by the user. To see if
something is checked or not you can inspect the “Checked” Property:

 checkbox.Checked - True if checked, False if not

(Short demo in class)

Radio Button Control

The radio button operates like an old car radio. When one button is pushed, any other
buttons “pop out”. For all radio buttons that are on a form, only one can be active at a
time. If you would like to have multiple subgroups of radio buttons then they should be
added to a GroupBox.

To see the value of a radio button, you can inspect the .Checked property just as with a
checkbox.

(Short demo in class)

Main Menu Control

This control allows you to add a menu to the application. To use it, drag a Main Menu
control to your form. Then double-click it in the form area. A menu designer will appear
at the top of your form saying “Type Here”.

You can now type the name of the top-level of your menu. Click and type to fill in sub-
areas. To attach code to the sub-areas, double-click on the menu item. The VB Code
window will appear with an event for you to fill in code.

Try adding a menu for F)ile, O)pen, and C)lose.

Variable Scope

Variable scope was described in the previous chapter, but we’ll give a brief review of this
concept again here because it is very important to understand.

Scope refers to the section of code where a variable is “alive”. There are two categories
of scope for a variable in VB.NET that are generally used: class or module or global
scope, and local scope. Both adhere to the same basic rule: a variable is accessible

everywhere within the form or subroutine where it is declared, including code

within nested subroutines.

Local Variables

A local variable only has scope within the subroutine it is created. When a variable is
declared within a subroutine procedure with a Dim statement, space reserved in memory
for that variable exists until the End Sub. After the subroutine exits, the variable ceases
to exist

Private Sub Button1_Click(...) Handles Button1.Click
 Dim num As Integer = 3 // Local Variable, reset to 3 when run
 num = num + 5
 MessageBox.Show(num) // Shows 8 every time
End Sub

Your program is free to have other subroutines that use the variable “num” and each will
refer to a different number.

Class or Module or Global Variables

Class or module variables are visible to every procedure in a form’s code. Dim
statements for Class-Level variables are placed outside all procedures at the top of the
program region. This is useful for variables you would like to use within many
procedures on the form.

Public Class Form1
 Dim strName As String ' Class or Module Level Variables

 Private Sub Button1_Click(...) Handles Button1.Click
 strName = InputBox("Enter your name")
 End Sub

 Private Sub Button2_Click(...) Handles Button2.Click
 Console.WriteLine("Your name is " & strName)
 End Sub
 End Class

End Class

This technique is also a way in which subroutines can send data to each other – one
subroutine can set the class level variable while the other reads it.

In normal usage, variable scoping is as simple as defined above. However, things get
trickier when variables have the same name. For example, consider the following
scenario:

Public Class Form1
 ' Class-level variable set to "Hello"

 Dim strName As String = "Hello"

 Private Sub Button1_Click(...) Handles Button1.Click

 ' Local variable set to "There"

 Dim strName As String = "There"

 Console.WriteLine(strName) ' Outputs "There"
 ' Local variable takes precedence over class-level variable

 End Sub
End Class

In the example above we have two variables named strName. One has class scope, the
other has local scope. Which variable is referenced when there is this ambiguity?

The rule used in VB.NET is that the scope of a variable begins with its most recent
declaration. This means that local variables take precedence over class variables. In the
example above, the local variable is output. Similarly, if we changed the variable
strName inside the Button1_Click event, we would change the local variable while the
class variable remains unchanged.

If we wanted to access the class or module level variable, use the keyword Me in front of
the variable name:

Public Class Form1
 ' Class-level variable set to "Hello"
 Dim strName As String = "Hello"

 Private Sub Button1_Click(...) Handles Button1.Click

 ' Local variable set to "There"
 Dim strName As String = "There"
 Console.WriteLine(Me.strName) ' Outputs "Hello"
 End Sub
End Class

It is common convention to always use the Me prefix for class level variables. Once
again, this example only demonstrates output of a variable, but we could also assign the
class or local variable to a different value.

VB.NET does not allow us to have multiple local variables with the same name within
the same scope. The following is illegal;

 Private Sub Button1_Click(...) Handles Button1.Click
 Dim strName As String = "There"

 Console.WriteLine(strName)

 Dim strName As String = "New String" ‘ ILLEGAL REDEFINITION

 Console.WriteLine(strName)
 End Sub

Random �umbers

Random number generation is described in chapter 8 of the book. It is often useful to
generate random numbers to produce simulations or games (or homework problems :)
One way to generate these numbers in VB.NET is to use the Random object.

The random object generates pseudo-random numbers. What is a pseudo-random
number? It is a number that is not truly random, but appears random. That is, every
number between 0 and 1 has an equal chance (or probability) of being chosen each time
random() is called. (In reality, this is not the case, but it is close).

Here is a very simple pseudorandom number generator to compute the ith random #:
 Ri = (Ri-1 * 7) mod 11

Initially, we set the “seed”, R0 = 1. Then our first “random” number is 7 mod 11 or 7.
Our second “random” number is then (7*7) mod 11 or 5.
Our third “random” number is then (5*7) mod 11 or 3.
Our fourth “random” number is then (3*7) mod 11 or 10.

..etc.

As you can see, the values we get seem random, but are really not. This is why they are
called pseudorandom. We can get slightly more random results by making the initial
seed some variable number, for example, derived from the time of day. The particular
function shown above would not be a very good pseudorandom number generator
because it would repeat numbers rather quickly.

Here is an example of using VB.NET’s random number generator.

1. At the class level, create a variable of type Random:

Dim rnd As New Random

This creates a new Random object. We’ll talk more about objects later when we
get to object-oriented programming. It is important to define this as a class level
variable, or you won’t get a good pseudorandom number sequence.

2. To generate a random integer x, where min ≤ x < max, use:

x = rnd.Next(min, max)

3. To generate a random double d, where 0 ≤ d < 1, use:

d = rnd.NextDouble()

Here is a short demonstration program:

Public Class Form1
 Dim rnd As New Random ' Create rnd object at class level

 Private Sub Button1_Click(...) Handles Button1.Click
 Dim intNum As Integer
 Dim dbl As Double

 intNum = rnd.Next(0, 4)
 Console.WriteLine(intNum)

 dbl = rnd.NextDouble()
 Console.WriteLine(dbl)
 End Sub
End Class

The program above might print out:

1
0.969432235215526

The second time the button is clicked it might print out:

3
0.032952289578017

Both the integer and double are randomly generated. While the method call allows us to
specify the range for integers, what if instead we wanted a random double between 5 and
15? We can just invoke rnd with:

intNum = rnd.Next(5, 16)

This generates a number that is ≥ 5 and < 16 (i.e. 5-15 inclusive).

Boolean Expressions and Conditions

The physical order of a program is the order in which the statements are listed. The
logical order of a program is the order in which the statements are executed. With
conditional structures and control structures that we will examine soon, it is possible to
change the order in which statements are executed.

Boolean Data Type

To ask a question in a program, you make a statement. If your statement is true, the
answer to the question is yes. If your statement is not true, the answer to the question is
no. You make these statements in the form of Boolean expressions. If you recall from
the previous lecture, a Boolean expression asserts (states) that something is true. The
assertion is evaluated and if it is true, the Boolean expression is true. If the assertion is
not true, the Boolean expression is false.

In VB.NET, the data type Boolean is used to represent Boolean data. Each boolean
constant or variable can contain one of two values: True or False.

Relational Operators

A Boolean expression can be a simple Boolean variable or constant or a more complex
expression involving one or more of the relational operators. Relational operators take
two operands and test for a relationship between them. The following table shows the
relational operators and the VB.NET symbols that stand for them.

VB. ET

Symbol

Relationship

= Equal to

<> Not equal to (since there is no ≠
symbol on the keyboard)

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

For example, the Boolean expression

number1 < number2

is evaluated to True if the value stored in number1 is less than the value stored in
number2, and evaluated to False otherwise.

Examples:

 Dim b as Boolean
 b = 3 < 1
 Console.WriteLine(b) ‘ Outputs “false”
 b = 3 > 1
 Console.WriteLine(b) ‘ Outputs “true”

When a relational operator is applied between variables of type String, the assertion is in
terms of where the two operands fall in the collating sequence of a particular character
set. For example,

character1 < character2

is evaluated to true if the character stored in character1 comes before the character
stored in character2 in the collating sequence of the machine on which the expression is
being evaluated. Although the collating sequence varies among machines, you can think
of it as being in alphabetic order. That is, A always comes before B and a always before

b, but the relationship of A to a may vary. This is an artifact of the way the alphabet was
defined in the ASCII code. For ASCII, it turns out the A < a.

 Dim b as Boolean
 b = “a” < “b”
 Console.WriteLine(b) ‘ Outputs “true”, ASCII a = 96, b = 97
 b = “abc” < “BAD”
 Console.WriteLine(b) ‘ Outputs “false”, ASCII a = 96, B=66

We must be careful when applying the relational operators to floating point operands,
such as doubles, particularly equal (=) and not equal (<>). Integer values can be
represented exactly; floating point values with fractional parts often are not exact in the
low-order decimal places. Therefore, you should compare floating point values for near
equality. For now, do not compare floating point numbers for equality. Instead compare
to a data range of interest.

Note that the relational operators are either binary; they take only two values. The
following is not a valid way to see if n is between 2 and 5:

 INVALID: 2 < n < 5 The accepted way is to use Boolean operators

Boolean Operators

A simple Boolean expression is either a Boolean variable or constant or an expression
involving the relational operators that evaluates to either true or false. These simple
Boolean expressions can be combined using the logical operations defined on Boolean
values. There are three Boolean operators: AND, OR, and NOT. Here is a table
showing the meaning of these operators and the symbols that are used to represent them
in VB.NET.

VB. ET

Keyword

Meaning

A�D AND is a binary Boolean operator. If both
operands are true, the result is true.
Otherwise, the result is false.

 True False

True True False

False False False

OR OR is a binary Boolean operator. If at least
one of the operands is true, the result is true.
Otherwise, the result is false.

 True False

True True True

False True False

�OT NOT is a unary Boolean operator. NOT
changes the value of its operand: If the
operand is true, the result is false; if the
operand is false, the result is true.

 �ot_Value

True False

False True

If relational operators and Boolean operators are combined in the same expression the
Boolean operator NOT has the highest precedence, the relational operators have next
higher precedence, and the Boolean operators AND and OR come last (in that order).
Expressions in parentheses are always evaluated first.

For example, given the following expression (stop is a boolean variable)

count <= 10 and sum >= limit or not stop

not stop is evaluated first, the expressions involving the relational operators are
evaluated next, the AND is applied, and finally the OR is applied.

It is a good idea to use parenthesis to make your expressions more readable, e.g:

 (((count <=10) AND (sum>=limit)) OR (NOT (stop)))

This also helps avoid difficult-to-find errors if the programmer forgets the precedence
rules.

A common error is to replace the condition

Not (2 < 3)
by the condition

(2 > 3)
The correct replacement is (2 >= 3) because >= is the opposite of <, just as <= is the
opposite of >

Exercises: Are the following statements true or false?

 Dim a as Integer = 2
 Dim b as Integer = 3

 3*a = 2*b

 (a<b) Or (b<a)

 (2<a) And (a<5)

 Not ((a<b) And (a<(b+a)))

 ((a=b) And (a*a<b*b)) Or ((b<a) And (2*a<b))

 “Car”<”Train”

 “99”>”ninety-nine”

 “9W” > “9a”

 ((“Ant” < “hill”) And (“mole” > “hill”)) Or Not (Not (“Ant” < “hill”) Or

Not (“Mole” > “hill”))

If-Then and If-Then-Else Statements

The If statement allows the programmer to change the logical order of a program; that is,
make the order in which the statements are executed differ from the order in which they
are listed in the program. The If-Then statement uses a Boolean expression to determine
whether to execute a statement or to skip it. The format is as follows:

 If (boolean_expression1)
 statement1 ‘ Expr1 true
 ElseIf (boolean_expression2)
 statement2 ‘ Expr1 false, Expr2 true
 ElseIf (boolean_expression3)
 statement3 ‘ Expr1, Expr2 false, Expr3 true
 …
 Else
 statement_all_above_false ‘ Expr1, Expr2, Expr3 false
 End If

The Else and ElseIf portions are optional. If you like you can leave them off. You can
also insert multiple statements into each section if you have more than one line of code
you would like to execute for each block.

Here are some examples of if statements.

To find the larger of two numbers:

Dim dblNum1, dblNum2, dblLargerNum As Double
dblNum1 = CDbl(txtFirstNum.Text)
dblNum2 = CDbl(txtSecondNum.Text)
If dblNum1 > dblNum2 Then
 dblLargerNum = dblNum1
Else
 dblLargerNum = dblNum2
End If
txtResult.Text = "The larger number is " & dblLargerNum

Setting an appropriate message for profit/loss:

If costs = revenue Then
 txtResult.Text = "Break even"
Else
 If costs < revenue Then
 profit = revenue - costs
 txtResult.Text = "Profit is " & FormatCurrency(profit)
 Else
 loss = costs - revenue
 txtResult.Text = "Loss is " & FormatCurrency(loss)
 End If
End If

Checking an answer for how much a ten gallon hat holds:

 Dim dblAnswer As Double
 dblAnswer = CDbl(txtAnswer.Text)
 If (dblAnswer >= 0.5) And (dblAnswer <= 1) Then
 txtSolution.Text = "Good, "
 Else
 txtSolution.Text = "No, "
 End If
 txtSolution.Text &= "it holds about 3/4 of" _
 & " a gallon."

Code that takes as input a number between 0-100 and outputs a letter grade, where 90-
100 is A, 80-90 is B, 70-80 is C, 60-70 is D, and anything below 60 is an F.

 numGrade = CDbl(textBoxGrade.Text)
 If (numGrade >= 90) Then
 Console.WriteLine("A")
 ElseIf (numGrade >= 80) Then

Console.WriteLine("B")
 ElseIf (numGrade >= 70) Then

 Console.WriteLine("C")
 ElseIf (numGrade >= 60) Then
 Console.WriteLine("D")
 Else

Console.WriteLine("F")
 End If

Note that anything can go inside the body of the If statement – including other If
statements! When we do this, it is called nested If statements. For example:

 If (numGrade >= 90) Then
 If (numGrade > 96) Then
 Return "A+"
 ElseIf (numGrade > 93) Then
 Return "A"
 Else
 Return "A-"
 End If
 ElseIf (numGrade >= 80) Then
 Return "B"
 End If

In general, any Nested If statement can be turned into a single If statement using AND’s
as follows:

The format on the right is generally less confusing, although there are exceptions.

If cond1 Then If cond1 And cond2 Then

If cond2 Then action

action End If

End If

End If

Nested

If

Less

Confusing

In-Class Exercise: Write a program that gives a short quiz about UAA:

1. Who is the current Dean of the College of Arts & Sciences?
a. Renee Carter-Chapman
b. Jim Liszka
c. Theodore Kassier

2. Which of these UAA programs awarded the most Bachelors degrees from
2004-2008?

a. Psychology
b. Management
c. Nursing

3. The USUAA President is?
a. Michaela Hernandez
b. Karl Wing
c. Seth Holtshouser

At the end of the quiz, display the score of the test-taker, where 1 point is awarded for
each correct question.

In-Class Exercise: Write a program that takes a year and determines if it is a leap year.
Every year divisible by four is a leap year, with the exception of years divisible by 100
and not divisible by 400. For example:

1600 is a leap year: Divisible by 4, Divisible by 100, and Divisible by 400
2000 is a leap year: Divisible by 4, Divisible by 100, and Divisible by 400

 1984 is a leap year: Divisible by 4, Not divisible by 100, Not divisible by 400
1700 is not a leap year: Divisible by 4, Divisible by 100, but not divisible by 400

In-Class Exercise:

The Prisoner’s Dilemma illustrates the conflict between individual and group rationality.
A group whose members pursue rational self-interest may all end up worse off than a
group whose members act contrary to rational self-interest.

In the standard Prisoner’s Dilemma, there are only two participants. From wikipedia:

Two suspects, A and B, are arrested by the police. The police have insufficient
evidence for a conviction, and, having separated both prisoners, visit each of them
to offer the same deal: if one testifies for the prosecution against the other and the
other remains silent, the betrayer goes free and the silent accomplice receives the
full 10-year sentence. If both stay silent, the police can sentence both prisoners to
only six months in jail for a minor charge. If each betrays the other, each will
receive a two-year sentence. Each prisoner must make the choice of whether to

betray the other or to remain silent. However, neither prisoner knows for sure
what choice the other prisoner will make. So the question this dilemma poses is:
What will happen? How will the prisoners act?

The dilemma can be summarised thus:

 Prisoner B Stays Silent Prisoner B Betrays

Prisoner A Stays Silent Both serve six months
Prisoner A serves ten years
Prisoner B goes free

Prisoner A Betrays
Prisoner A goes free
Prisoner B serves ten years

Both serve two years

This scenario appears in many natural settings, including economics, sociology, and
biology. See http://www.brembs.net/ipd/ipd.html for some examples.

Write a program that allows a human to play against a computer in the Prisoner’s
Dilemma game. The computer should use the “tit for tat” strategy – cooperate (i.e. stay
silent) the first time, and thereafter do the same thing that the player did last time. The
program should count up the number of years served in prison by the human and the
computer over repeated iterations of the game.

2a) 326
b) 268
c) 531

Select Case Blocks

A Select Case block is a more compact way to construct what is equivalent to an if-then-
elseif statement. Select statements use the value of a single expression called the selector.
Possible actions are executed depending on the value of the selector.

The general format of a select block is:

Select Case selector
 Case valueList1
 action1
 Case valueList2
 action2
 Case Else
 action of last resort
End Select

The Case Else is optional.

Here is an example of using a select statement to take the finishing position of a horse
and indicate if the outcome is Win, Place, or Show:

 Dim position As Integer
 position = CInt(txtPosition.Text)
 Select Case position ' position is the selector
 Case 1
 txtOutcome.Text = "Win"
 Case 2
 txtOutcome.Text = "Place"
 Case 3
 txtOutcome.Text = "Show"
 Case 4, 5
 txtOutcome.Text = "You almost placed in the money."
 Case Else
 txtOutcome.Text = "Out of the money."
 End Select

Note that we can insert lists of values. For example, 4 and 5 are separated by a comma.
If the user entered either 4 or 5 then txtOutcome.Text would be set to “You almost placed
in the money.”

We can specify data ranges and also use relational operators as show below:

 Dim position As Integer
 position = CInt(txtPosition.Text)
 Select Case position
 Case 1 To 3
 txtOutcome.Text = "In the money."
 Case Is >= 4
 txtOutcome.Text = "Not in the money."
 End Select

In-Class Exercise:

Write a program that inputs a number between 0 and 99 and outputs the value in English,
e.g. “ninety nine” for 99, “zero” for 0, etc. Don’t use 100 different WriteLine
statements!

Larger In-Class Exercise: The Monty Hall problem

You are a contestant on a game show and have won a shot at the grand prize. Before you
are three doors. Behind one door is a new Mustang convertible and $1,000,000 in cash.
Behind the other two doors are the booby prizes of macaroni & cheese plus a bottle of
dishwasher detergent. The location of the prizes is randomly selected. You want the car
and the cash. The game show host asks you to select a door, and you randomly pick one.
However, before revealing the contents behind your door, the game show host reveals
one of the other doors that contains the booby prize. At this point, the game show host
asks if you would like to stick with your original choice or switch your choice to the
remaining door. What choice should you make to optimize your chances of winning the
grand prize, or does it matter?

Write a computer program to simulate one run of the Monty Hall problem. Make three
buttons to represent the three doors. Pick a random number from 1-3 to represent the
door that holds the grand prize. Let the user choose one of the doors. The program
should then display on the button one of the doors that has the booby prize. Let the user
click a button again, and this time display what is behind the door the user selected. Run
the program several times – is it better to switch, or does it matter?

Pseudocode:

1. Set class level variable, FirstPick, to true. If true, this means the player is picking
a door for the first time. If false, this means the player is picking the door after
one door has been revealed so we should display what prize the player gets.

2. Create class level variable to generate random numbers
3. Create class level variable to store the door with the prize
4. In the form-load event (executed when the program first runs) set the prize to a

random number from 1-3
5. Make three buttons on the form
6. In the button click event for button 1 (door 1)

a. If FirstPick=True then
i. See if door 2 is a booby prize. If so, display it. Otherwise see if

door 3 is a booby prize. If so, display it.
ii. Set FirstPick to False

b. Else
i. If the variable with the prize is 1, then display “You win the car”

else display “You win detergent”
ii. Reset FirstPick to True, reset button text, and pick a new door for

the prize so we can play again

