
Introduction to Classes and Objects

A class is short for classification, and in object-oriented-speak, it corresponds to a user-

defined specification for an object. The class is the definition; you can think of it like the

blueprint for a complex device. It says how the device works, but if all you have is the

blueprint then you can’t actually use the device yet.

We will define classes with two major subcomponents:

 Member Data; these are variables or properties of interest

 regarding the class. For example, if a class is “Auto” then

 the member data might specify variables to hold the make,

VIN, owner, etc.

 Methods; these are functions or subs that perform some action regarding

 the class. For the “Auto” class we might have methods to

 brake, accelerate, shift, etc.

A class only specifies how some device works, like a blueprint. To use the device, you

need some instantiation of the blueprint; i.e. the device must be constructed. The

instantiation is called an instance and is sometimes referred to as the object. To create

an instance of a class we use the keyword new. We’ve seen some examples of this

already, e.g. with Lists and the Random class.

To make a new class, from the “Project” menu select “Add Class”. Here is the format to

define a class:

 Public Class ClassName

 PublicOrPrivate ClassVar1 As DataType

 PublicOrPrivate ClassVar2 As DataType

 …

 PublicOrPrivate Function FunctionName..

 PublicOrPrivate Sub SubName…

 …

 PublicOrPrivate Property …

 End Class

The PublicOrPrivate is either the word Public or Private. If set to public then the

variable, function, subroutine, or property is accessible from outside the class (using the

dot notation, e.g. varname.ClassVar1). If set to private then the variable, function,

subroutine, or property is accessible only inside the class. This principle supports the

notion of data-hiding; data and variables that the user doesn’t need to see should be

hidden to prevent them from being mucked up accidentally (e.g. the innards of the auto

are hidden from a driver).

Previously, we just used Dim to declare class variables. This equates to the Private

modifier for the variable.

All of these options, variables, subroutines, functions, and properties are optional. We’ll

talk about what the properties do a bit later.

Here is an example for a simple Money class. For now it only contains variables; later

we will add some subroutines and functions and properties.

Public Class Money

 Public intDollars As Integer

 Private intCents As Integer

End Class

From another place in our program, such as in a button click event on a form:

 Dim m1 As New Money

 m1.intDollars = 10 ' Legal, Public

 m1.intCents = 20 ' ILLEGAL, Private

This program will generate a compiler error since we are trying to access a private

variable from outside the class.

For now let’s set both member variables in the class to public:

Public Class Money

 Public intDollars As Integer

 Public intCents As Integer

End Class

Here is some code that uses this class:

 Dim m1 As New Money

 Dim m2 As New Money

 m1.intDollars = 3

 m1.intCents = 40

 m2.intDollars = 10

 m2.intCents = 50

 Console.WriteLine(m1.intDollars & " " & m1.intCents)

 Console.WriteLine(m2.intDollars & " " & m2.intCents)

The output of this program is:

3 40

10 50

When the program reaches the WriteLine statement, we have created two separate

instances of the Money object, each with different values stored in their member

variables:

This can be quite convenient, because we can now associate multiple variables together

in a single object. While both of these variables were of type integer in this example, the

types could be anything. For example, a class to represent an Employee might contain

variables like the following:

Class Employee

 Public strName As String

 Public intAge As Integer

 Public dblHourlyWage As Double

 Public strID As String

End Class

In this example, we associated different variable types with the Employee object. This is

a powerful construct to help organize our data efficiently and logically.

Class Constructors

Because we use classes to encapsulate data types, it is essential that class objects be

initialized properly. When we defined the Money class, we were relying upon the user to

set the value for dollars and cents outside the class. What if the client forgets to initialize

the values? This can be such a serious problem that VB.NET provides a mechanism to

guarantee that all class instances are properly initialized, called the class constructor.

A class constructor is a Sub with the special name of New. We can even make multiple

constructors with multiple parameters, to differentiate different ways a class may be

initialized. Below are two constructors for the Money class along with a subroutine to

print the currency value:

Public Class Money

 Private intDollars As Integer

 Private intCents As Integer

 ' This is the default constructor, invoked if we create

 ' the object with no parameters

 Public Sub New()

 intDollars = 1

 intCents = 0

 End Sub

 ' This constructor invoked if we create the object with

 ' a dollar and cents value

 Public Sub New(ByVal intNewDollars As Integer, _

 ByVal intNewCents As Integer)

 intDollars = intNewDollars

 intCents = intNewCents

 End Sub

 ' This subroutine prints the value out

 Public Sub PrintValue()

 Console.WriteLine(intDollars & "." & intCents)

 End Sub

End Class

Code in a buttonclick event to use the money class:

 Dim m1 As New Money

 Dim m2 As New Money(5, 50)

 m1.PrintValue()

 m2.PrintValue()

When this program runs, the output is:

 1.0 � From m1

5.50 � From m2

When we create m1, we give no parameters in Money(). This invokes the default

constructor, which is given as:

Public Sub New()

This code initializes dollars to 1 and cents to 0.

When we create m2, we give two parameters in Money(5,50). VB.NET will then search

for a constructor that has two parameters that match the ones provided. The constructor

that is found is then invoked:

 Public Sub New(ByVal intNewDollars As Integer, _

 ByVal intNewCents As Integer)

This code then sets the member variables to the input parameters, resulting in the output

previously specified.

Let’s add some more code to the Money class to make it a bit more useful. In particular,

since the class variables are private, let’s make a way for the user of the class to get and

set the dollars and cents. One way to provide access is through a property block. The

Get procedure of the property block is used to retrieve the value of a variable. The Set

procedure of the property block is used to set the value of a variable.

Add the following to the Money Class:

 ' Provide access to get and set the dollars variable

 Public Property Dollars() As Integer

 Get

 Return intDollars

 End Get

 Set(ByVal value As Integer)

 intDollars = value

 End Set

 End Property

 ' Provide access to get and set the cents variable

 Public Property Cents() As Integer

 Get

 Return intCents

 End Get

 Set(ByVal value As Integer)

 intCents = value

 End Set

 End Property

We can now access the property “Dollars” and “Cents” from the caller:

 Dim m1 As New Money

 Dim m2 As New Money(5, 50)

 m1.Dollars = 25 ' Uses the SET part of the Dollars Property

 m1.Cents = 75 ' Uses the SET part of the Cents Property

 m1.PrintValue()

 ' Use the GET part of Dollars and Cents the properties

 Console.WriteLine(m2.Dollars & "." & m2.Cents)

The output is:

 25.75 � From m1.PrintValue()

 5.50 � From Console.WriteLine(m2.Dollars & “.” & m2.Cents)

One of the nice things about the Property block is that we can add more code to perform

validation and control regarding what values we want to get and set. For example, let’s

say that we did the following:

 Dim m1 As New Money

 m1.Dollars = 25 ' Use the SET part of the Properties

 m1.Cents = 375

 m1.PrintValue()

The output is: 25.375

This is not really desirable, because it really means we have 375 cents, but this would

probably be interpreted as 37.5 cents. A better solution would be to turn groups of 100

cents into dollars. We can add the proper logic to do this in the Property block:

 ' Provide access to get and set the cents variable

 Public Property Cents() As Integer

 Get

 Return intCents

 End Get

 Set(ByVal value As Integer)

 ' Increment dollars if we have more than 99 cents

 If value > 99 Then

 intDollars += value \ 100

 intCents = value Mod 100

 End If

 End Set

 End Property

The output now becomes: 28.75

Notice the abstraction we have implemented in the Cents property. If we ever add

together something more than 100 cents, then we automatically update the cents into

dollars. This logic is hidden for us in the Money class simply by executing the line of

code:

 moneyVar.Cents = 375

If we had just defined the dollars and cents variables as public variables, then it would

allow the outside user to set the cents to values over 100, possibly causing errors in how

the program is interpreted.

By also making the dollars and cents private, we have the option to change the internal

details and have these changes hidden from a user of the class. For example, we might

decide to use a single variable of type Double to store the dollars and the cents. Then we

could provide the proper logic in the Dollars and Cents properties to set and extract the

dollar and cent amounts out of the Double and return them as an Integer. The user of the

class won’t see any difference.

Let’s look at an example using objects and then continue with inheritance and

polymorphism.

As an example, let’s re-write the Trivia game. We’ll make a single List that holds the

trivia data instead of creating separate arrays for the question, answer, value, and whether

or not a question was used.

First, here is the Trivia class. In addition to the question, answer, value, and used

information, it also has a constructor for setting everything when the object is made:

Public Class Trivia

 Private strQuestion As String

 Private strAnswer As String

 Private intValue As Integer

 Private blnUsed As Boolean

 ' Constructor to initialize a new Trivia question

 Public Sub New(ByVal strNewQuestion As String, _

 ByVal strNewAnswer As String, _

 ByVal intNewValue As Integer)

 Me.blnUsed = False

 Me.strQuestion = strNewQuestion

 Me.strAnswer = strNewAnswer

 Me.intValue = intNewValue

 End Sub

 ' Properties for each member variable

 Public Property Question() As String

 Get

 Return Me.strQuestion

 End Get

 Set(ByVal value As String)

 Me.strQuestion = value

 End Set

 End Property

 Public Property Answer() As String

 Get

 Return Me.strAnswer

 End Get

 Set(ByVal value As String)

 Me.strAnswer = value

 End Set

 End Property

 Public Property Value() As Integer

 Get

 Return Me.intValue

 End Get

 Set(ByVal value As Integer)

 Me.intValue = value

 End Set

 End Property

 Public Property Used() As Boolean

 Get

 Return Me.blnUsed

 End Get

 Set(ByVal value As Boolean)

 Me.blnUsed = False

 End Set

 End Property

End Class

First let’s declare our class level variables. We only need to store one List of Trivia

objects. The list will keep track of how many trivia questions we have added, so we

don’t need a separate variable to count the number of entries:

 Dim listTrivia As New List(Of Trivia)

We can delete these variables:

 Dim listQuestions As New List(Of String)

 Dim listAnswers As New List(Of String)

 Dim listValues As New List(Of Integer)

 Dim listQuestionsUsed As New List(Of Boolean)

Let’s start fixing our program by modifying the Load event where we load in all the

questions. We had the following:

 For i = 0 To intNumQuestions - 1

 strQuestion = triviaFile.ReadLine

 strAnswer = triviaFile.ReadLine

 strTemp = triviaFile.ReadLine

 listQuestions.Add(strQuestion)

 listAnswers.Add(strAnswer)

 listValues.Add(CInt(strTemp))

 listQuestionsUsed.Add(False)

Next

This gets changed to create a new Trivia object each iteration of the loop and adding it to

the list:

For i = 0 To intNumQuestions - 1

 strQuestion = triviaFile.ReadLine

 strAnswer = triviaFile.ReadLine

 strTemp = triviaFile.ReadLine

 Dim intValue As Integer = CInt(strTemp)

 Dim triviaQ As Trivia = New Trivia(strQuestion, strAnswer, intValue)

 listTrivia.Add(triviaQ)

Next

Getting most of our helper functions to work with the new structure requires accessing

listTrivia followed by the index and the property we want for that trivia question:

 Public Sub PickRandomQuestion()

 ' Loop until we find a question we haven't asked before,

 ' i.e. blnQuestionsUsed is false for that question

 Do

 intQuestionIndex = rand.Next(0, listTrivia.Count)

 Loop Until listTrivia(intQuestionIndex).Used = False

 listTrivia(intQuestionIndex).Used = True

 End Sub

 Public Sub ShowQuestion()

 Me.lblQuestion.Text = listTrivia(intQuestionIndex).Question

 Me.lblQuestionNum.Text = "Question #" & CStr(intWhichQuestion)

 Me.txtAnswer.Text = ""

 End Sub

 Function IsCorrect(ByVal strGuess As String) As Boolean

 If (strGuess.ToLower =

listTrivia(intQuestionIndex).Answer.ToLower) Then

 Return True

 Else

 Return False

 End If

 End Function

For the button click event, this time I saved a reference to the current trivia object in a

variable (triviaQ) and used that instead of referencing the arrays all the time:

 Private Sub btnAnswer_Click(. . .) Handles btnAnswer.Click

 Dim sGuess As String

 sGuess = Me.txtAnswer.Text

 ' Get current trivia object

 Dim triviaQ As Trivia = listTrivia(intQuestionIndex)

 If IsCorrect(sGuess) Then

 Dim points As Integer

 points = triviaQ.Value ' Use current trivia object's value

 MessageBox.Show("That's Right! You got " & CStr(points) & "

points.")

 Me.intScore += points

 Else

 Dim points As Integer

 Dim strAnswer As String

 strAnswer = triviaQ.Answer

 points = triviaQ.Value

 MessageBox.Show("That's wrong! You lost " & CStr(points) &

" points. The answer is " & strAnswer)

 Me.intScore -= points

 End If

 intWhichQuestion += 1

 If intWhichQuestion = 5 Then

 MessageBox.Show("Game over. Your score is " & Me.intScore)

 Me.Close()

 Else

 PickRandomQuestion()

 ShowQuestion()

 End If

 Me.txtAnswer.Focus()

 End Sub

The program runs the same as before, but programmers most would argue that it is

organized in a way that is easier to read and modify if adding more features to the project.

Inheritance and Polymorphism

The concept of inheritance is a common feature of an object-oriented programming

language. Inheritance allows a programmer to define a general class, and then later

define more specific classes that share or inherit all of the properties of the more general

class. This allows the programmer to save time and energy that might otherwise be spent

writing duplicate code.

Related to inheritance is the concept of polymorphism. Polymorphism allows us to define

different methods (i.e. subroutines and functions) with the same name, but have those

methods do different things with different objects.

For example, perhaps we would like to build an application about candy. For starters,

let’s say we want to do something with Twix bars and something with Reese’s Peanut

Butter Cups. We might make classes like the following:

Public Class Twix

 Private intCalories As Integer

 Private ingredients As New List(Of String)

 Public Sub New()

 intCalories = 580

 ingredients.Add("Sugar")

 ingredients.Add("Chocolate")

 ingredients.Add("Caramel")

 End Sub

 Public Function GetInfo() As String

 Dim strIngred As String

 Dim i As Integer

 strIngred = CStr(ingredients(0))

 For i = 1 To ingredients.Count - 1

 strIngred = strIngred & " " & CStr(ingredients(i))

 Next

 Return "Calories: " & CStr(intCalories) & _

 " Ingredients: " & strIngred

 End Function

End Class

Public Class Reeses

 Private intCalories As Integer

 Private ingredients As New List(Of String)

 Public Sub New()

 intCalories = 460

 ingredients.Add("Sugar")

 ingredients.Add("Chocolate")

 ingredients.Add("Peanut Butter")

 End Sub

 Public Function GetInfo() As String

 Dim strIngred As String

 Dim i As Integer

 strIngred = CStr(ingredients(0))

 For i = 1 To ingredients.Count - 1

 strIngred = strIngred & " " & CStr(ingredients(i))

 Next

 Return "Calories: " & CStr(intCalories) & _

 " Ingredients: " & strIngred

 End Function

End Class

You should already be familiar with how one might use these classes. For example, the

following code creates two candy bars and prints their info:

 Dim twixbar As New Twix

 Dim reesescups As New Reeses

 Console.WriteLine(twixbar.GetInfo)

 Console.WriteLine(reesescups.GetInfo)

This program outputs:

Calories: 580 Ingredients: Sugar Chocolate Caramel

Calories: 460 Ingredients: Sugar Chocolate Peanut Butter

This might be fine for some applications, but right off the bat we can see that we are

duplicating a lot of the same code. For example, the GetInfo() subroutine is going to be

the same for any candy bar. As the program is now, if we had 100 different candy bars,

we would have 100 different GetInfo() subroutines.

Instead, we can take advantage of a natural ordering of candy bars. We can visualize the

types of candy bars in a hierarchy as follows:

A Twix Bar is a Chocolate Bar which in turn is a Candy Bar. This means that a Twix

bar has all the properties that Chocolate Bars have, which in turn have all the properties

that Candy Bars have.

We can create a class for each type of candy and link them together as indicated in this

hierarchy. The property of inheritance will give us the “isa” relationship so that anything

we define for the Candy Bars class will automatically be inherited by all classes below it,

saving us the trouble of re-defining them. A child or derived class is a class defined by

adding instance variables and methods to an existing class. That existing class that we

are building upon is called the base or parent class. For example, the Twix class is

derived from the base class of Chocolate Bars. To create a derived class, we add the

keywords Inherits <parent-class> to the class definition, followed by the name of the

base class:

 class Twix

 Inherits ChocolateBars

The child classes inherit all of the public variables, properties, and methods from the

parent class as well! This is nice because we get to reuse the same code that is already

written for parent classes.

There is also a new categorization of class variables called protected. This modifier

indicates that a variable is not accessible from outside the class, but is inherited by all

children.

Here is an example for the Twix, Reeses, ChocolateBars, and CandyBars classes:

In this example, we define the calories and ingredients variables in the CandyBar class

since these are variables that apply to any Candy Bar. These variables are inherited by all

classes below it, so they automatically get access to the variables without having to

redefine them.

CandyBar

calories

ingredients

New() : Has sugar

GetInfo()

ChocolateBar

New() : Has choc

Twix

New() : Has cara

Cal = 580

Reeses

New() : Has PB

Cals = 460

At the CandyBar level we also have a function, GetInfo(). It returns a string of the

calories and ingredients. It is also accessible by any class defined below it, so the

function only exists in one place.

When we create an object, the constructors for all the parent classes will also be invoked.

Consequently, when we make a Twix object, VB.NET will first invoke the constructor

for CandyBar, then the constructor for ChocolateBar, and finally Twix would be last.

Here is our sample code:

Public Class CandyBar

 Protected intCalories As Integer

 Protected ingredients As New List(Of String)

 Public Sub New()

 ingredients.Add("Sugar") ' All candy bars have sugar

 End Sub

 Public Function GetInfo() As String

 Dim strIngred As String

 Dim i As Integer

 strIngred = CStr(ingredients(0))

 For i = 1 To ingredients.Count - 1

 strIngred = strIngred & " " & CStr(ingredients(i))

 Next

 Return "Calories: " & CStr(intCalories) & _

 " Ingredients: " & strIngred

 End Function

End Class

Public Class ChocolateBar

 Inherits CandyBar

 Public Sub New()

 ingredients.Add("Chocolate") ' All candy bars have sugar

 End Sub

End Class

Public Class Twix

 Inherits ChocolateBar

 Public Sub New()

 intCalories = 580

 ingredients.Add("Caramel")

 End Sub

End Class

Public Class Reeses

 Inherits ChocolateBar

 Public Sub New()

 intCalories = 460

 ingredients.Add("Peanut Butter")

 End Sub

End Class

Here is code that we can run, whose output is identical to before:

 Dim twixbar As New Twix

 Dim reesescups As New Reeses

 Console.WriteLine(twixbar.GetInfo)

 Console.WriteLine(reesescups.GetInfo)

When we create an instance of a Twix object (via Dim twixbar as new Twix) here is what

happens:

1. The twix object inherits its own variables of "calories" and "ingredients"

2. The parent constructors are called first:

a. CandyBar’s constructor adds “sugar” to ingredients

b. ChocolateBar’s constructor adds “chocolate” to ingredients

c. Twix’s constructor adds “caramel” to ingredients and sets calories to 580

Graphically, the Twix object looks something like this:

Invoking GetInfo() outputs all of the ingredients and calories for each object. This

eliminates repeat code since all child objects share the same code base.

We could also add specific subroutines, functions, or variables at lower levels of the

hierarchy and those variables would only be accessible at that level or lower.

Polymorphism and Overriding

At times a programmer may want to define the same method for different classes in the

inheritance hierarchy, but have the method do different things. This is possible though a

construct called polymorphism and overriding. When we define a Sub or Function with

the same name in the inheritance hierarchy, VB.NET will automatically use the method

or property that is most specific to the object used.

To use this feature, we must add the keyword overridable to the methods we would like

to allow to be overridden in the base class. For example, the following allows the

getInfo() function to be overridden in the Twix class:

Twix Instance

calories = 580
Ingredients =

Sugar

Chocolate
Caramel

GetInfo()

 In CandyBar Class:

 Overridable Function GetInfo() As String

 Dim sIngred As String

 Dim i As Integer

 sIngred = CStr(ingredients(0))

 For i = 1 To ingredients.Count - 1

 sIngred = sIngred & " " & CStr(ingredients(i))

 Next

 Return "Calories: " & CStr(calories) & _

 " Ingredients: " & sIngred

 End Function

Now we can define a function of the same name in the Twix class except we use the

keyword overrides. The MyBase.GetInfo() call invokes the parent definition of GetInfo:

 In Twix Class:

 Overrides Function GetInfo() As String

 Return MyBase.GetInfo() & ". Two for me, none for you"

 End Function

Now if we run our code:

 Dim twixbar As New Twix

 Dim reesescups As New Reeses

 Console.WriteLine(twixbar.GetInfo)

 Console.WriteLine(reesescups.GetInfo)

We get:
Calories: 580 Ingredients: Sugar Chocolate Caramel Two for me,

none for you

Calories: 460 Ingredients: Sugar Chocolate Peanut Butter

This feature can be very useful for customizing subroutines at more specific levels of the

inheritance hierarchy while retaining the generality offered at higher levels of abstraction.

It turns out that every class we make is actually a descendant of the predefined class

named Object. This means that every class we create will inherit methods from Object.

It turns out that VB.NET defines several methods for the Object class. If you type any

object and a dot, e.g.:

Then we get a pop-up window with all methods available. We wrote the GetInfo method,

but where did Equals, GetType, ToString, etc. come from? The answer is that these

methods were all inherited from the Object class.

There are many other subtleties regarding the hierarchy of objects (e.g. we can assign a

variable to be of type Twix to a variable defined of type CandyBar, but not vice versa)

that we will skip here but you would cover in more detail in a class on Object Oriented

Programming.

