
1

Subroutines and Functions

Introduction

• So far, most of the code has been inside a single method for an
event

– Fine for small programs, but inconvenient for large ones

– Much better to divide program into manageable pieces (modularization)

• Benefits of modularization

– Avoids repeat code (reuse a function many times in one program)

– Promotes software reuse (reuse a function in another program)

– Promotes good design practices (Specify function interfaces)

– Promotes debugging (can test an individual module to make sure it
works properly)

• General procedures: procedures not associated with specific events

– Sub

– Function

– Property

2

Sub Procedures

• The purpose of a Sub procedure is to operate

and manipulate data within some specific

context

• A general procedure is invoked by using its

defined name

– For example: Message()

– You’ve been using Sub Procedures all the time:

• E.g. g.DrawLine(Pens.Blue, 10, 10, 40, 40)

MessageBox.Show(txtInput.Text)

Creating a General Sub

Procedure
• Ensure that the Code window is activated by:

– Double clicking on a Form, or

– Pressing the F7 function key, or

– Selecting the Code item from the View menu

• Type a procedure declaration into the Code

window inside the “Public Class 6” block

– Public Sub procedure-name()

• Visual Basic will create the procedure stub

• Type the required code

3

Exchanging Data with a

General Procedure
• Syntax for calling a Sub procedure into action:

procedure-name(argument list)

Calling a Sub Procedure

Exchanging Data with a General

Procedure (continued)

• A general Sub procedure declaration must include:
– Keyword Sub

• optionally, the word Public in front of Sub

– Name of the general procedure

• The rules for naming Sub procedures are the same as the rules for
naming variables

– Names of any parameters

• Parameter: the procedure’s declaration of what data it
will accept

• Argument: the data sent by the calling function

• Individual data types of each argument and its
corresponding parameter must be the same

4

Exchanging Data with a General

Procedure (continued)
The Structure of a General Sub Procedure

Parameter List: ByVal varName1 as DataType, ByVal varName2 as DataType, 6

Can use ByRef instead of ByVal – difference discussed later

Public Sub ExplainPurpose()

Example
Private Sub Button1_Click(. . .) Handles Button1.Click

lstResult.Items.Clear()

ExplainPurpose()

lstResult.Items.Add("")

lstResult.Items.Add("This program displays a sentence")

lstResult.Items.Add("identifying two numbers and their sum.")

End Sub

End Sub

5

Code Re-Use

• If in another place in the code you wanted to explain the purpose,
you can just invoke the subroutine:

• Avoids duplicate the same code in many places

• If you ever want to change the code, only one place needs to be
changed

Public Sub OtherCode(6)

ExplainPurpose()

‘ Presumably other code here

End Sub

Passing Parameters

• You can send items to a Sub procedure
Sum(2, 3)

Public Sub Sum(ByVal num1 As Double, ByVal num2 As Double)

Console.WriteLine(num1+num2)

End Sub

• In the Sum Sub procedure, 2 will be stored in num1 and 3 will be
stored in num2 and the sum will be output to the console

The order of the parameters determines which value is

sent in as what variable! The data types must match!

6

Passing Variables

• We can pass variables too:

x = 2

y = 3

Sum(x,y) ‘ Same as Sum(2, 3)

• The variables are evaluated prior to calling the
subroutine, and their values are accessible via the
corresponding variable names in the sub

Population Density Sub

• Subroutine to calculate population density:

Public Sub CalculateDensity(ByVal state As String, _

ByVal pop As Double, _

ByVal area As Double)

Dim rawDensity, density As Double

rawDensity = pop / area

density = Math.Round(rawDensity, 1) ' Round to 1 decimal place

Console.Write("The density of " & state & " is " & density)

Console.WriteLine(" people per square mile.")

End Sub

VB.NET adds “ByVal” if you leave it off.

We’ll discuss what this means shortly…

7

Parameters and Arguments

CalculateDensity("Alaska", 627000, 591000)

Arguments – what you send to

a Sub procedure

Parameters – place holders for

what the sub procedure

receives

Public Sub CalculateDensity(ByVal state As String, _

ByVal pop As Double, _

ByVal area As Double)

Code Reuse

• By making CalculateDensity a procedure

subroutine, we can reuse it, e.g.:

CalculateDensity(“Hawaii”, 1212000, 6471)

8

Sub Procedures Calling Other

Sub Procedures

Private Sub btnDisplay_Click(...)
Handles btnDisplay.Click

FirstPart()
Console.WriteLine(“a”)

End Sub

Sub FirstPart()
SecondPart()
Console.WriteLine(“b”)

End Sub

Sub SecondPart()
Console.WriteLine(“c”)

End Sub

Output:

c

b

a

In Class Exercises

• Write a Sub procedure that takes as arguments an animal and
sound for the “Old McDonald Had A Farm” song and outputs the
verse, e.g.:

– Old McDonald had a farm, E-I-E-I-O.

– And on his farm he had a cow, E-I-E-I-O.

– With a moo moo here, and a moo moo there,

– Here a moo, there a moo, everywhere a moo moo.

– Old McDonald had a farm, E-I-E-I-O

• Complete the program in the Form Load event to output the verses
for a cow, chicken, and lamb.

9

Passing by Value
• ByVal stands for “By Value”

– Default mode, VB.NET adds this for you if you leave it

off

• ByVal parameters retain their original value after

Sub procedure terminates

– Can think of this as a copy of the variable is sent in

Public Sub ValSub(ByVal x As Integer)

Dim x As Integer = 3

ValSub(x)

Memory

X 3

X 3

ByVal Example

Public Sub CallingSub()

Dim y As Integer

y = 5

Console.WriteLine("y is " & y)

ValSub(y)

Console.WriteLine("y is " & y)

End Sub

Public Sub ValSub(ByVal x As Integer)

x = 10

Console.WriteLine(" x is " & x)

End Sub

Output?

10

ByVal Example – Y to X

Public Sub CallingSub()

Dim x As Integer

x = 5

Console.WriteLine(“x is " & x)

ValSub(x)

Console.WriteLine(“x is " & x)

End Sub

Public Sub ValSub(ByVal x As Integer)

x = 10

Console.WriteLine("x is " & x)

End Sub

Output?

Passing by Reference

• ByRef stands for "By Reference“

– You can think of this as a reference, or pointer, to the original

variable is sent to the subroutine

• ByRef parameters can be changed by the Sub

procedure and retain the new value after the Sub

procedure terminates

Public Sub RefSub(ByRef x As Integer)

Dim x As Integer = 3

RefSub(x)

Memory

X 3

X

11

ByRef Example

Public Sub CallingSub()

Dim y As Integer

y = 5

Console.WriteLine("y is " & y)

RefSub(y)

Console.WriteLine("y is " & y)

End Sub

Public Sub RefSub(ByRef x As Integer)

x = 10

Console.WriteLine(" x is " & x)

End Sub

Output?

ByRef Example – Y to X

Public Sub CallingSub()

Dim x As Integer

x = 5

Console.WriteLine(“x is " & x)

RefSub(x)

Console.WriteLine(“x is " & x)

End Sub

Public Sub RefSub(ByRef x As Integer)

x = 10

Console.WriteLine("x is " & x)

End Sub

Any

Difference in

Output?

12

Local Variables

• Variables declared inside a Sub procedure with

a Dim statement

• Parameters are also considered local variables;

their values are gone when the subroutine exits

(unless parameters were passed ByRef)

In-Class Exercise

• Write a subroutine that swaps two integer

variables; e.g. Swap(x,y) results in exchanging

the values in X and Y

13

Function Procedures

• A function directly returns a single value to its

calling procedure

• Types of functions:

– Intrinsic

– User-defined

Function Procedures

(continued)

A Function Directly Returns a Single Value

14

Function Procedures

(continued)

The Structure of a Function Procedure

Calling a Function Procedure

• To call a function procedure:

– Give the function’s name

– Pass any data to it in the parentheses following the

function name

• Arguments of the called function are the items

enclosed within the parentheses in a calling

statement

15

Calling a Function Procedure

(continued)

Calling and Passing Data to a Function

Sample

Private Sub btnDetermine_Click(...)

Handles btnDetermine.Click

Dim name As String

name = txtFullName.Text

txtFirstname.Text = FirstName(name)

End Sub

Public Function FirstName(ByVal name As String) As String

Dim firstSpace As Integer

firstSpace = name.IndexOf(" ")

Return name.Substring(0, firstSpace)

End Function

Function

call

Return

statement

16

Having Several Parameters

Private Sub btnCalculate_Click(...)

Handles btnCalculate.Click

Dim a, b As Double

a = CDbl(txtSideOne.Text)

b = CDbl(txtSideTwo.Text)

txtHyp.Text = CStr(Hypotenuse(a, b))

End Sub

Public Function Hypotenuse(ByVal a As Double, _

ByVal b As Double) As Double

Return Math.Sqrt(a ^ 2 + b ^ 2)

End Function

User-Defined Functions

Having No Parameters

Private Sub btnDisplay_Click(...) _

Handles btnDisplay.Click

txtBox.Text = Saying()

End Sub

Public Function Saying() As String

Return InputBox("What is your" _

& " favorite saying?")

End Function

17

Comparing Function Procedures

with Sub Procedures

• Subs are accessed using a call statement

– For example:

MySub(num1, num2)

• Functions are called where you would expect to

find a literal or expression

– For example:

Result = functionCall

Console.WriteLine (functionCall)

Functions vs. Procedures

• Both can perform similar tasks

– Use a function or subroutine when you find yourself

repeating the same (or almost the same) code over

and over again

• Both can call other subs and functions

• Use a function when you want to return one and

only one value

– A function or sub can also be declared with ByRef

arguments to return multiple values back through the

argument list

18

Collapsing a Procedure with a

Region Directive

• A procedure can be collapsed behind a captioned

rectangle

• This task is carried out with a Region directive.

• To specify a region, precede the code to be collapsed

with a line of the form
#Region "Text to be displayed in the box."

• and follow the code with the line
#End Region

Region Directives

19

Collapsed Regions

In-Class Exercise

• For Homework #1:
– To maintain one's body weight, a human that is A years old,

weighs K kilograms and is H centimers tall needs to consume

approximately the following number of Calories per day:

• Males: (10 * weight) + (6.25 * height) - (5 * age) + 5

• Females: (10 * weight) + (6.25 * height) - (5 * age) - 161

• We made almost identical code in two separate button

clicks; rewrite the solution to use a single subroutine

