1/13/2013

Chapter 1 :: Introduction

Programming Language Pragmatics

Michael L. Scott

Programming Languages

* What programming languages can you name?
* Which do you know?

1/13/2013

Introduction

* Why are there so many programming
languages?
— evolution -- we've learned better ways of doing
things over time

— socio-economic factors: proprietary interests,
commercial advantage

— orientation toward special purposes
— orientation toward special hardware
— diverse ideas about what is pleasant to use

Introduction

* What makes a language successful?
— easy to learn (BASIC, Pascal, LOGO, Scheme, Alice)

— easy to express things, easy use once fluent,
"powerful” (C, Common Lisp, APL, Algol-68, Perl)

— easy to implement (BASIC, Forth)

— possible to compile to very good (fast/small) code
(Fortran)

— backing of a powerful sponsor (COBOL, PL/1, Ada,
Visual Basic, C#)

— wide dissemination at minimal cost (Pascal, Turing,
Java, Alice)

Alice Screenshot

Iﬁ Alice (2.0 04/05/2005) - E:\studie' \Alic

File Edit Tools Help

Events |create new event
Ccamera
gl‘ =l world
3 Li

While Seace| s pressed
Begin: IceSkater.go wireframe, —

During: <None>
End: IceSkater.go solid —

When the world starts, do * World.my first animation -

create new variable

Wait 1second —

spi

i <None> i = Poi =
plinkEyes Camera — set point of viewto <None> — point of view of = Camera.PointOfView? — duration =2 seconds — maore.
setBlink shouldBlink

Wait 1second —

Camera — set point of viewto <None> — point of view of =Camera.PointOfView — more...

TookAndwink
simpleSpin

circleAround whichObject
skateBackwards howManySteps
jump

9o wireframe

[=IDo together
IceSkater — turn left — 0.45 revolutions — more...

IceSkater — setpose IceSkater.pose — more...

IceSkater.skate howManySteps =1

IceSkater.simpleSpin

9o solid

IceSkater move

backwards and jump
[=IDo together

-2 =

Doinorder ' Dotogether IffElse “Loop ‘While 'Forallinorder ' For alltogether

Wait | print

Introduction

* Why do we have programming languages?
What is a language for?
— way of thinking -- way of expressing algorithms
— languages from the programmer’s point of view

— abstraction of virtual machine -- way of
specifying what you want the hardware to do
without getting down into the bits

— languages from the implementor’s point of view

1/13/2013

1/13/2013

Why study programming languages?

* Help you choose a language.
— Cvs. Modula-3 vs. C++ for systems programming
— Fortran vs. APL vs. Ada for numerical computations
— Ada vs. Modula-2 for embedded systems

— Common Lisp vs. Scheme vs. ML for symbolic data
manipulation

— Java vs. C/CORBA for networked PC programs

Why study programming languages?

* Make it easier to learn new languages some
languages are similar; easy to walk down
family tree

— concepts have even more similarity; if you think in
terms of iteration, recursion, abstraction (for
example), you will find it easier to assimilate the
syntax and semantic details of a new language
than if you try to pick it up in a vacuum. Think of
an analogy to human languages: good grasp of
grammar makes it easier to pick up new languages
(at least Indo-European).

Why study programming languages?

* Help you make better use of whatever
language you use

— understand obscure features:

* In C, help you understand unions, arrays & pointers,
separate compilation, varargs, catch and throw

* In Common Lisp, help you understand first-class
functions/closures, streams, catch and throw, symbol
internals

Why study programming languages?

* Help you make better use of whatever
language you use (2)
— understand implementation costs: choose
between alternative ways of doing things, based
on knowledge of what will be done underneath:

— use simple arithmetic e.g.(use x*x instead of x**2)

— use C pointers or Pascal "with" statement to factor address
calculations

— avoid call by value with large data items in Pascal
— avoid the use of call by name in Algol 60

— choose between computation and table lookup (e.g. for
cardinality operator in C or C++)

1/13/2013

Why study programming languages?

* Help you make better use of whatever
language you use (3)
— figure out how to do things in languages that
don't support them explicitly:
* lack of suitable control structures in Fortran

* use comments and programmer discipline for
control structures

* lack of recursion in Fortran, CSP, etc

* write a recursive algorithm then use mechanical
recursion elimination (even for things that aren't
quite tail recursive)

Why study programming languages?

* Help you make better use of whatever
language you use (4)
— figure out how to do things in languages that
don't support them explicitly:

— lack of named constants and enumerations in Fortran

— use variables that are initialized once, then never
changed

— lack of modules in C and Pascal use comments and
programmer discipline

— lack of iterators in just about everything fake them with
(member?) functions

1/13/2013

1/13/2013

Language Categories

* Two common language groups

— Imperative

* von Neumann (Fortran, Pascal, Basic, C)

* object-oriented (Smalltalk, Eiffel, C++, Java)

* scripting languages (Perl, Python, JavaScript, PHP)
— Declarative

* functional (Scheme, ML, pure Lisp, FP)

* logic, constraint-based (Prolog, VisiCalc, RPG)

Imperative languages

* Imperative languages, particularly the von
Neumann languages, predominate
— They will occupy the bulk of our attention

* We also plan to spend time on functional,

logic languages

1/13/2013

Compilation vs. Interpretation

e Compilation vs. interpretation
— hot opposites
— not a clear-cut distinction

* Pure Compilation

— The compiler translates the high-level source
program into an equivalent target program
(typically in machine language), and then goes
away:

! ' , . ™ -
Source program ——> _ Compiler j‘b Target program

Input —>< Target program >—> Output

Compilation vs. Interpretation

* Pure Interpretation

— Interpreter stays around for the execution of
the program

— Interpreter is the locus of control during
execution

Source program ~
Input —

Interpreter > —— Output

1/13/2013

Compilation vs. Interpretation

* Interpretation:
— Greater flexibility
— Better diagnostics (error messages)

* Compilation

— Better performance

Compilation vs. Interpretation

 Common case is compilation or simple pre-
processing, followed by interpretation

* Most language implementations include a
mixture of both compilation and
interpretation

Source program ——» (Translator >—> Intermediate program

Intermediate program

firtual machine) ()llt])llt
Il]]\llt /

1/13/2013

Compilation vs. Interpretation

Note that compilation does NOT have to produce
machine language for some sort of hardware

Compilation is translation from one language into
another, with full analysis of the meaning of the
input

Compilation entails semantic understanding of
what is being processed; pre-processing does not

A pre-processor will often let errors through. A
compiler hides further steps; a pre-processor does
not

Compilation vs. Interpretation

Many compiled languages have interpreted
pieces, e.g., formats in Fortran or C

Most use “virtual instructions”

— set operations in Pascal

— string manipulation in Basic

Some compilers produce nothing but virtual
instructions, e.g., Pascal P-code, Java byte
code, Microsoft COM+

10

Compilation vs. Interpretation

* Implementation strategies:

— Preprocessor
* Removes comments and white space

* Groups characters into tokens (keywords,
identifiers, numbers, symbols)

* Expands abbreviations in the style of a macro
assembler

* |Identifies higher-level syntactic structures (loops,
subroutines)

Compilation vs. Interpretation

* Implementation strategies:

— Library of Routines and Linking
* Compiler uses a linker program to merge the

appropriate library of subroutines (e.g., math functions

such as sin, cos, log, etc.) into the final program:

Fortran program ——» Compiler — [ncomplete machine language

Incomplete machine

language =
— Machine language program

Library routines

1/13/2013

11

Compilation vs. Interpretation

* Implementation strategies:

— Post-compilation Assembly

* Facilitates debugging (assembly language easier for
people to read)

* Isolates the compiler from changes in the format of
machine language files (only assembler must be
changed, is shared by many compilers)

Source program ——» Compiler —> Assembly language
Assembly language ——> Assembler —— Machine language

Compilation vs. Interpretation

* Implementation strategies:

— The C Preprocessor (conditional compilation)

* Preprocessor deletes portions of code, which allows
several versions of a program to be built from the
same source

Source program ——» Preprocessor — Modified source program

Modified source program ——» Compiler — Assembly language

1/13/2013

12

Compilation vs. Interpretation

* Implementation strategies:

— Source-to-Source Translation (C++)

* C++ implementations based on the early AT&T
compiler generated an intermediate program in C,
instead of an assembly language:

Source program ——» Preprocessor)——> Modified source program
Modified source program ——s(C4-+ compiler) —— C code
Cecode —— C compiler ——> Assembly language

Compilation vs. Interpretation

* Implementation strategies:
— Bootstrapping
* Early Pascal compilers built around a set of tools that included:

— A Pascal compiler, written in Pascal, that would generate output in
P-code, a simple stack-based language

— A Pascal compiler already translated into P-code
— A P-code interpreter, written in Pascal

. We have to write this
Compiler.p /
Compiler.pcode P-code interpreter
> Int ter.
translated to C nierpreter.exe
Interpreter.p

1/13/2013

13

Compiler.pcode

Pascal Interpeter

Interpreter.exe

Program.p

J

Program.pcode

!

Interpreter.exe

i

Output of Program.p

Bootstrap compiler

Modify Compiler.p to compile to native code instead of P-code, then
use the compiler to compile itself

Compiler.p

Compiler.p to x86
run via Interpreter

R

X86 Compiler.exe

Program.p

Program.exe

1/13/2013

14

1/13/2013

Compilation vs. Interpretation

* Implementation strategies:

— Compilation of Interpreted Languages

* The compiler generates code that makes
assumptions about decisions that won’t be finalized
until runtime. If these assumptions are valid, the
code runs very fast. If not, a dynamic check will
revert to the interpreter.

Compilation vs. Interpretation

Implementation strategies:

— Dynamic and Just-in-Time Compilation

* In some cases a programming system may deliberately
delay compilation until the last possible moment.
— Lisp or Prolog invoke the compiler on the fly, to translate

newly created source into machine language, or to optimize
the code for a particular input set.

— The Java language definition defines a machine-independent
intermediate form known as byte code. Byte code is the
standard format for distribution of Java programs.

— The main C# compiler produces .NET Common Language
Runtime (CLR), which is then translated into machine code
immediately prior to execution.

15

1/13/2013

Compilation vs. Interpretation

* Compilers exist for some interpreted languages,
but they aren't pure:

— selective compilation of compilable pieces and extra-
sophisticated pre-processing of remaining source.

— Interpretation of parts of code, at least, is still
necessary for reasons above.

* Unconventional compilers
— text formatters
— silicon compilers
— query language processors

Programming Environment Tools

* Tools; Integrated in an Integrated Development
Environment (IDE)

Type Unix examples
Editors vi, emacs

Pretty printers chb, indent
Pre-processors (esp. macros) cpp.mé4, watfor
Debuggers adb, sdb, dbx, gdb
Style checkers lint,purify
Module management make

Version management 5CCS, rcs
Assemblers as

Link editors, loaders Id, Id-so

Perusal tools

More, less, od, nm

Program cross-reference

ctags

16

1/13/2013

An Overview of Compilation

* Phases of Compilation

Character stream _
—

[&mnner (lexical analysis)

s
Token stream —__
—

(Parser (syntax analysis)

-
¥ I
Parse tree —__

T Semantic analysis and
_—— \intermediate code generation

N N

Abstract syntax tree or -~
other intermediate form ~— [Machine-independent

1

)

code improvement (optiona

. . . «
Meodified intermediate form —__
[Target code generation

Assembly or machine language,
or other target language

ARV AN =

~—a Machine-specific
— code improvement (optional)
Modified target language
[Symbaol table]

An Overview of Compilation

Scanning:

— divides the program into "tokens", which are the
smallest meaningful units; this saves time, since
character-by-character processing is slow

— we can tune the scanner better if its job is simple;
it also saves complexity (lots of it) for later stages

— you can design a parser to take characters instead
of tokens as input, but it isn't pretty

— scanning is recognition of a regular language, e.g.,
via DFA (deterministic finite automaton)

17

1/13/2013

An Overview of Compilation

* Parsing is recognition of a context-free
language, e.g., via Pushdown Automaton
(PDA)

— Parsing discovers the "context free" structure
of the program
— Informally, it finds the structure you can

describe with syntax diagrams (the "circles and
arrows" in a Pascal manual)

Ill

Pascal “Railroad” diagram

if-stmt if condition stmts

else-if else stmts

else-if condition then stmts |——

18

1/13/2013

An Overview of Compilation

* Semantic analysis is the discovery of meaning
in the program

— The compiler actually does what is called STATIC
semantic analysis. That's the meaning that can be
figured out at compile time

— Some things (e.g., array subscript out of bounds)
can't be figured out until run time. Things like
that are part of the program's DYNAMIC
semantics

An Overview of Compilation

 Intermediate form (IF) done after semantic
analysis (if the program passes all checks)
— IFs are often chosen for machine independence,

ease of optimization, or compactness (these are
somewhat contradictory)

— They often resemble machine code for some
imaginary idealized machine; e.g. a stack machine,
or a machine with arbitrarily many registers

— Many compilers actually move the code through
more than one IF

19

1/13/2013

An Overview of Compilation

* Optimization takes an intermediate-code
program and produces another one that
does the same thing faster, or in less space
— The term is a misnomer; we just improve code
— The optimization phase is optional

* Code generation phase produces assembly
language or (sometime) relocatable
machine language

An Overview of Compilation

 Certain machine-specific optimizations (use of
special instructions or addressing modes, etc.)
may be performed during or after target code
generation

* Symbol table: all phases rely on a symbol table
that keeps track of all the identifiers in the
program and what the compiler knows about
them
— This symbol table may be retained (in some form) for

use by a debugger, even after compilation has
completed

20

1/13/2013

An Overview of Compilation

 Lexical and Syntax Analysis
— GCD Program (Pascal)

program gcd(input, output);
var i, j : integer;
begin
read(i, j);
while i <> j do
if 1 > j then 1 =1 - j
else j = j - 1i;
writeln(i)
end.

An Overview of Compilation

* Lexical and Syntax Analysis
— GCD Program Tokens

* Scanning (lexical analysis) and parsing recognize the
structure of the program, groups characters into
tokens, the smallest meaningful units of the program

program gcd (input , output) ;

var i , J : integer ; begin
read (i , j) ; while
i <> j do if i > j
then i H i - j else J

1= j - i : writeln (i

) end

21

1/13/2013

An Overview of Compilation

* Lexical and Syntax Analysis

— Context-Free Grammar and Parsing
* Parsing organizes tokens into a parse tree that
represents higher-level constructs in terms of their
constituents
* Potentially recursive rules known as context-free
grammar define the ways in which these
constituents combine

An Overview of Compilation

* Context-Free Grammar and Parsing

— Example (Pascal program)

program —— PROGRAM id (id more_ids) ; block .

where

block — labels constants types variables subroutines BEGIN stmt
more_stmts END

and
more_ids — , id more_ids
or

more_ids —— €

22

1/13/2013

An Overview of Compilation

e Context-Free Grammar and Parsing
— GCD Program Concrete Parse Tree

program

PROGRAH id(GCD) { {1d{INPUT) more_ids 3 B block
i Ad(OUTPUT) more_ids

¢

label constants fypes wariables subrowfines BEGIN stmé more_simis END
€ € € €
VAR id(I) more_ids type ; more_variables
i 1d0I) more_dids simple_type 3 READ ¢ 1id(I} more_ids)
€ id (INTEGER} , Ad{I) more_ids

€

Next slide

An Overview of Compilation

* Context-Free Grammar and Parsing

— GCD Program Parse Tree (continued)

I%\ THEN /ji{\a.‘\ ELEE atmt
simple_expr > simple_expr id = erpr id = expr
term term I term - ferm J term - term
| | | | | |
facto: Sfactor factor facto actor facto
| | | | | |
id (1) id (1) id (I} id (1) id {3 id(T)

23

An Overview of Compilation

* Syntax Tree

— GCD Program Abstract Parse Tree

program

(5) read

//\\‘\““ ren’ii\\

(3) (6

T while

T write

\
3 7
©® O \ T writeln

N I PN

6) () (6 (7)

® (M (@ (©

Figure 1.4: Syntax tree and symbol table for the GCD program.

Code Generation

Naive MIPS assembly code fragment

addiu
sw
jal
nop
sw
jal
nop
sw
1w
1w
nop
beg
nop
A: 1w

SPs
ra,

sp, -32

20 (sp)

getint

vo,

28 (sp)

getint

vo,

t7,

t6,

t8,

28 (sp)

S

=

= T

=

Reserve room for local vars
save return address
read

store i
read

store j
load i to t6
load j to t7

branch if I = J

load I

1/13/2013

24

