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Syntax 

Syntax 

• Syntax defines what is grammatically valid in a programming 
language 
– Set of grammatical rules 

– E.g. in English, a sentence cannot begin with a period 

– Must be formal and exact or there will be ambiguity in a 
programming language 

• We will study three levels of syntax 
– Lexical 

• Defines the rules for tokens:  literals, identifiers, etc. 

– Concrete Syntax or just “Syntax” 
• Actual representation scheme down to every semicolon, i.e. every 

lexical token 

– Abstract Syntax – will cover in Semantics 
• Description of a program’s information without worrying about specific 

details such as where the parentheses or semicolons go 
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BNF or Context Free Grammar 

• BNF = Backus-Naur Form to specify a grammar 
– Equivalent to a context free grammar 

• Set of rewriting rules (a rule that can be applied multiple 
times) also known as production rules defined on a set of 
nonterminal symbols, a set of terminal symbols, and a start 
symbol 
– Terminals,  :  Basic alphabet from which programs are constructed.  

E.g., letters, digits, or keywords such as “int”, “main”, “{“, “}” 

– Nonterminals, N : Identify grammatical categories 

– Start Symbol:  One of the nonterminals which identifies the principal 
category.  E.g., “Sentence” for english, “Program” for a programming 
language 

Rewriting Rules 

• Rewriting Rules, ρ 

– Written using the symbols  and | 

 | is a separator for alternative definitions, i.e. “OR” 

  is used to define a rule, i.e. “IS” 

 

– Format 
• LHS  RHS1 | RHS2 | RHS3 | … 

• LHS is a single nonterminal 

• RHS is any sequence of terminals and nonterminals 
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Sample Grammars 

• Grammar for subset of English 
 Sentence  Noun Verb 
 Noun  Jack | Jill 
 Verb  eats | bites 

• Grammar for a digit 
 Digit  0 | 1 | 2 | 3 | 4 | 5 | 6 |7 |8 |9 

• Grammar for signed integers 
 SignedInteger  Sign Integer 
 Sign  + | - 
 Integer  Digit | Digit Integer 

• Grammar for subset of Java 
 Assignment   Variable = Expression 
 Expression  Variable | Variable + Variable | Variable – Variable 
 Variable  X | Y  

 

Derivation 
• Process of parsing data using a grammar 

– Apply rewrite rules to non-terminals on the RHS of an existing rule 

– To match, the derivation must terminate and be composed of 
terminals only 

• Example 
 Digit  0 | 1 | 2 | 3 | 4 | 5 | 6 |7 |8 |9 

 Integer  Digit | Digit Integer 

– Is 352 an Integer? 

    Integer → Digit Integer → 3 Integer →  

   3 Digit Integer →  3 5 Integer →  

    3 5 Digit → 3 5 2 

Intermediate formats are called sentential forms 
This was called a Leftmost Derivation since we replaced the leftmost nonterminal 
symbol each time (could also do Rightmost) 
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Derivation and Parse Trees 

• The derivation can be 
visualized as a parse 
tree 

Integer 

Digit 

3 

Integer 

Digit 

5 

Integer 

2 

Digit 

Parse Tree Sketch for Programs 
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BNF and Languages 

• The language defined by a BNF grammar is the set of all 
strings that can be derived  
– Language can be infinite, e.g. case of integers 

• A language is ambiguous if it permits a string to be parsed 
into two separate parse trees 
– Generally want to avoid ambiguous grammars 
– Example:   

• Expr  Integer | Expr + Expr | Expr * Expr  |  Expr - Expr 
• Parse:   3*4+1 

– Expr * Expr → Integer * Expr →  

 3 * Expr → 3 * Expr+Expr → … 3 * 4 + 1 

– Expr + Expr → Expr + Integer → Expr + 1 

 Expr * Expr +1 → … 3 * 4 + 1 

Ambiguity 

• Example for 

 AmbExp  Integer | AmbExp – AmbExp 

 2-3-4 
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Ambiguous IF Statement 

Dangling ELSE: 
  
 if (x<0) 
 if (y<0)  { y=y-1 } 
 else { y=0 }; 
 
Does the else go with the first or second if? 

Dangling Else Ambiguity 
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How to fix ambiguity? 

• Use explicit grammar without ambiguity 

– E.g., add an “ENDIF” for every “IF” 

 • One problem with end markers is that they tend to 
bunch up. In Pascal you say 

  if A = B then … 

 else if A = C then … 

 else if A = D then … 

 else if A = E then … 

 else ...; 

• With end markers this becomes 
  if A = B then … 

 else if A = C then … 

 else if A = D then … 

 else if A = E then …  

 else ...; 

 end; end; end; end; 

Ambiguity 

• Fixing Ambiguity 

– Java makes a separate category for if-else vs. if: 
IfThenStatement  If (Expr) Statement 

IfThenElseStatement  If (Expr) StatementNoShortIf else 
Statement 

StatementNoShortIf contains everything except IfThenStatement,   
so the else always goes with the IfThenElse statement not the 
IfThenStatement 

• In general, we add new  grammar rules that enforce 
precedence 
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Precedence Example 

• Ambiguous 
– Expr  Identifier  |  Integer | Expr + Expr | Expr * Expr  |  Expr – 

Expr 
 

• Unambiguous 
– Expr  Term   |  Expr  +  Term  |  Expr - Term 
– Term  Factor  |  Term  *  Factor 
– Factor   Integer   |  Identifier 

 

• Parse:   3*4+1 
– Expr + Term     Term + Term    Term * Factor + Term  
   Integer * Factor + Term    3 * Factor + Term   
      3 * Integer + Term  3 * 4 + Term  3 * 4 + Factor  
     3 * 4 + Integer   3 * 4 + 1 

 
• What has precedence, + or *? 

 
 

Alternative to BNF 

• The use of regular expressions is a common 
alternate way to express a language  

 The empty string 

Kleene Star 
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Regex to EBNF 

• Sometimes the following variations on “standard” 
regular expressions are used: 

 { M }   means zero or more occurrences of M 

 ( M | N)    means one of M or N must be chosen 

    [ M ]   means M is optional 

 

Use “{“  to mean the literal {  not the regex { 

Regular Expressions 

• Numerical literals in Pascal may be generated 
by the following: 
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RegEx Examples 

• Booleans 
– “true” | “false” 

• Integers 
– (0-9)+ 

• Identifiers 
– (a-zA-Z)(a-zA-Z0-9)* 

• Comments (letters/space only) 
– “//”(a-zA-Z)*(“\r” | “\n” | “\r\n”) 

• Simple Expressions 
– Expr  Term ( (+|-) Term )* 
– Term  Factor ( (* | / ) Factor) * 

• Regular expressions seem pretty powerful 
– Can you write one for the language anbn?   (i.e. n a’s followed by n b’s) 

Regular Expressions != Context Free 
Grammar 

• Regular expressions express a subset of 
context free grammars 

– Regular Expressions  Regular Languages  
Language of a Deterministic Finite State 
Automaton 

– Context Free Grammars  Context Free 
Languages  Language of a Pushdown 
Automata 
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Lexical Analysis 

• Lexicon of a programming language – set of all 
nonterminals from which programs are written 

• Nonterminals – referred to as tokens 

– Each token is described by its type (e.g. identifier, 
expression) and its value (the string it represents) 

– Skipping whitespace or comments  

or punctuation 

Categories of Lexical Tokens 

• Identifiers 
• Literals 

Includes Integers, true, false, floats, chars 
• Keywords 

bool char else false float if int main true while 
• Operators 

= || && == != < <= > >= + - * / % ! [ ] 
• Punctuation 

; . { } ( ) 
  
Issues to consider:   Ignoring comments, role of whitespace, 

distinguising the < operator from <=, distinguishing 
identifiers from keywords like “if”  
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A Simple Lexical Syntax for a Small C-Like 
Language 

 

Primary  Identifier [  "["Expression"]" ] |  Literal | "("Expression")" 
 | Type "("Expression")" 
 
Identifier  Letter ( Letter | Digit )* 
Letter  a | b | … | z | A | B | … Z 
Digit  0 | 1 | 2 | …  | 9 
Literal   Integer | Boolean | Float | Char 
Integer   Digit ( Digit )* 
Boolean  true  |  false 
Float  Integer .  Integer 
Char  ‘ ASCIICHAR ‘ 

Scanning 

• Recall scanner is responsible for 

– tokenizing source 

– removing comments 

– (often) dealing with pragmas (i.e., significant 
comments) 

– saving text of identifiers, numbers, strings 

– saving source locations (file, line, column) for 
error messages 
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Scanning 
• Suppose we are building an ad-hoc (hand-

written) scanner for Pascal: 
– We read the characters one at a time with 

look-ahead 

• If it is one of the one-character tokens  
{ ( ) [ ] < > , ; = + - etc } 

we announce that token 

• If it is a ., we look at the next character 
– If that is a dot, we announce .. 

– Otherwise, we announce . and reuse the look-
ahead 

Scanning 

• If it is a <, we look at the next character 

– if that is a = we announce <= 

– otherwise, we announce < and reuse the look-
ahead, etc. 

• If it is a letter, we keep reading letters and 
digits and maybe underscores until we can't 
anymore 

– then we check to see if it is a reserved word 
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Scanning 

• If it is a digit, we keep reading until we find 
a non-digit 

– if that is not a . we announce an integer 

– otherwise, we keep looking for a real number 

– if the character after the . is not a digit we 
announce an integer and reuse the . and the 
look-ahead 

 

Scanning 

• Pictorial 
representation 
of a Pascal 
scanner as a 
finite 
automaton 
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Scanning 

• This is a deterministic finite automaton (DFA) 

– Lex, scangen, etc. build these things automatically 
from a set of regular expressions 

– Specifically, they construct a machine that 
accepts the language 
identifier | int const  

| real const | comment | symbol | 

... 

– This is the Lexical Syntax for the programming 
language 

 

Scanning 

• We run the machine over and over to get one 
token after another 

– Nearly universal rule: 

• always take the longest possible token from the input 
thus foobar is foobar and never f or foo or foob 

• more to the point, 3.14159 is a real const and never 
3, ., and 14159 

• Regular expressions "generate" a regular 
language; DFAs "recognize" it 
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Scanning 

• Scanners tend to be built three ways 
– ad-hoc 

– semi-mechanical pure DFA  
(usually realized as nested case statements) 

– table-driven DFA 

• Ad-hoc generally yields the fastest, most 
compact code by doing lots of special-purpose 
things, though good automatically-generated 
scanners come very close 

Scanning 
• Writing a pure DFA as a set of nested case 

statements is a surprisingly useful 
programming technique  

– though it's often easier to use perl, awk, sed 

• Table-driven DFA is what lex and scangen 
produce based on an input grammar 

– lex (flex) in the form of C code 

– scangen in the form of numeric tables and a 
separate driver (for details see Figure 2.11) 
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Scanning 
• Note that the rule about longest-possible 

tokens means you return only when the next 
character can't be used to continue the 
current token 
– the next character will generally need to be saved 

for the next token 
• In some cases, you may need to peek at more 

than one character of look-ahead in order to 
know whether to proceed 
– In Pascal, for example, when you have a 3 and you 

a see a dot 
• do you proceed (in hopes of getting 3.14)? 

or  
• do you stop (in fear of getting 3..5)? 

Scanning 

• In messier cases, you may not be able to get 
by with any fixed amount of look-ahead. In 
Fortran, for example, we have 
 DO 5 I = 1,25 loop 

 DO 5 I = 1.25 assignment 

• Here, we need to remember we were in a 
potentially final state, and save enough 
information that we can back up to it, if we 
get stuck later 
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Parsing – From lexical to concrete syntax 
• Terminology: 

– context-free grammar (CFG) 

– symbols 
• terminals (tokens) 

• non-terminals 

– production 

– derivations (left-most and right-most - canonical) 

– parse trees 

– sentential form 

Parsing 

• By analogy to RE and DFAs, a context-free 

grammar (CFG) is a generator for a context-

free language (CFL) 

– a parser is a language recognizer 

• There is an infinite number of grammars for 

every context-free language  

– not all grammars are created equal, however 
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Parsing 

• It turns out that for any CFG we can create 
a parser that runs in O(n^3) time 

• There are two well-known parsing 
algorithms that permit this 

– Early's algorithm 

– Cooke-Younger-Kasami (CYK) algorithm 

• O(n^3) time is clearly unacceptable for a 
parser in a compiler - too slow 

Parsing 

• Fortunately, there are large classes of 
grammars for which we can build parsers that 
run in linear time 
– The two most important classes are called  

LL and LR 

• LL stands for  
'Left-to-right, Leftmost derivation'. 

• LR stands for  
'Left-to-right, Rightmost derivation’ 
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Parsing 

• LL parsers are also called 'top-down', or 
'predictive' parsers & LR parsers are also called 
'bottom-up', or 'shift-reduce' parsers 

• There are several important sub-classes of LR 
parsers 

– SLR 

– LALR 

• We won't be going into detail on the 
differences between them 

Parsing 

• Every LL(1) grammar is also LR(1), though right 
recursion in production tends to require very 
deep stacks and complicates semantic analysis 

• Every CFL that can be parsed deterministically 
has an SLR(1) grammar (which is LR(1)) 

• Every deterministic CFL with the prefix property 
(no valid string is a prefix of another valid 
string) has an LR(0) grammar 
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Parsing 

• You commonly see LL or LR written with a 

number in parentheses after it 

– This number indicates how many tokens of 

look-ahead are required in order to parse 

– Almost all real compilers use one token of look-

ahead 

• This grammar is LL(1)  
– idlist    idlist   id    |    id 

LL vs. LR 
 
 
Input string:  A, B, C; 
 
Token list: 
 A 
 , 
 B 
 , 
 C 
 ; 
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LL Parsing 

• Here is an LL(1) grammar for a calculator 
language (Fig 2.15): 

1. program   stmt_list $$ 

2. stmt_list   stmt stmt_list  

3.     |  

4. stmt     id := expr  

5.     | read id  

6.     | write expr 

7. expr   term term_tail 

8. term_tail   add_op term term_tail  

9.     |  

LL Parsing 

• LL(1) grammar (continued) 
10. term    factor fact_tail 

11. fact_tail   mult_op fact fact_tail 

12.    |  

13. factor     ( expr )  

14.    | id  

15.    | number 

16. add_op    +  

17.    | - 

18. mult_op   *  

19.    | / 
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LL Parsing 
• Example program 
  read A 

  read B 

  sum := A + B 

  write sum 

  write sum / 2 
• First we extract tokens and find identifiers 
• We start at the top and predict needed productions 

on the basis of the current left-most non-terminal in 
the tree and the current input token 
– Called recursive descent 

Recursive Descent Parser 
void match(expected) 
 if input_token = expected 
  consume input_token 
 else parse_error 
 
void program() 
 if input_token = ID, READ, WRITE, $$ 
  stmt_list() 
  match($$) 
 else parse_error 
 
void stmt_list() 
 if input_token = ID, READ, WRITE 
  stmt(); 
  stmt_list(); 
 if input_token = $$  
  skip 
 else parse_error 

1. program   stmt_list $$ 

2. stmt_list   stmt stmt_list  

3.    |  
4. Stmt    id := expr  

5.    | read id  

6.    | write expr 



1/13/2013 

24 

Recursive Descent Parser 
void stmt() 
 if input_token = ID 
  match(id) 
  match(:=) 
  expr() 
 if input_token = READ 
  match(read) 
  match(id) 
 if input_token = WRITE 
  match(write) 
  expr() 
 else parse_error 
 
void expr() 
 if input_token = ID, NUMBER, ( 
  term(); 
  term_tail() 
 else parse_error 
   

Stmt    id := expr  

   | read id  

   | write expr 

expr  term term_tail 

term_tail  add_op term term_tail 

 |  
term    factor fact_tail 

factor  ( expr )  

   | id  

   | number 

 

Recursive Descent Parser 
void term_tail() 
 if input_token = +, - 
  add_op() 
  term() 
  term_tail() 
 if input_token = ), ID, READ, WRITE, $$ 
  skip 
 else parse_error 
 
void term() 
 if input_token = ID, NUMBER, ( 
  factor() 
  factor_tail() 
 else parse_error 
   

term_tail  add_op term term_tail | ε 

term    factor fact_tail 

fact_tail  mult_op fact fact_tail | ε 

factor   ( expr )  

   | id  

   | number 

add_op     +  | - 

mult_op    * | / 
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Recursive Descent Parser 
void factor_tail() 
 if input_token = *, / 
  mult_op() 
  factor() 
  factor_tail() 
 if input_token = +,-,), ID, READ, WRITE, $$ 
  skip 
 else parse_error 
 
void factor() 
 if input_token = ID 
  match(id) 
 if input_token = NUMBER 
  match(number) 
 if input_token = ( 
  match (() 
  expr() 
  match()) 
 else parse_error 
   

term_tail  add_op term term_tail | ε 

term    factor fact_tail 

fact_tail  mult_op fact fact_tail | ε 

factor   ( expr )  

   | id  

   | number 

add_op     +  | - 

mult_op    * | / 

 

 

void add_op() 
 if input_token = + 
  match(+) 
 if input_token = - 
  match(-) 
 else parse_error 
 
void mult_op() 
 if input_token = * 
  match(*) 
 if input_token = / 
  match(/) 
 else parse_error 
 

Parse Tree 
  read A 

  read B 

  sum := A + B 

  write sum 

  write sum / 2 
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LL Parsing 

• Table-driven LL parsing:  you have a big loop in 
which you repeatedly look up an action in a 
two-dimensional table based on current 
leftmost non-terminal and current input 
token.  The actions are  

(1) match a terminal 

(2) predict a production 

(3) announce a syntax error 

LL Parsing 
• LL(1) parse table for parsing for calculator 

language 
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LL Parsing 

• To keep track of the left-most non-terminal, 
you push the as-yet-unseen portions of 
productions onto a stack 

– for details see Figure 2.20 

• The key thing to keep in mind is that the stack 
contains all the stuff you expect to see 
between now and the end of the program  

– what you predict you will see  

LL Parsing 
• Problems trying to make a grammar LL(1) 

– left recursion 

• example: 

id_list  id | id_list , id 

   equivalently 

id_list  id id_list_tail 

id_list_tail  , id id_list_tail 

    | ε 

• we can get rid of all left recursion mechanically in any 
grammar 
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LL Parsing 
• Problems trying to make a grammar LL(1) 

– common prefixes: another thing that LL parsers 
can't handle 
• solved by "left-factoring” 

• example: 

 stmt  id := expr | id ( arg_list ) 

   equivalently 

 stmt  id id_stmt_tail 

 id_stmt_tail  := expr  

    | ( arg_list) 

• we can eliminate left-factor mechanically 

LL Parsing 
• Note that eliminating left recursion and 

common prefixes does NOT make a 

grammar LL 

– there are infinitely many non-LL 

LANGUAGES, and the mechanical 

transformations work on them just fine 

– the few that arise in practice, however, can 

generally be handled with kludges 
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Bottom-Up and LR Parsing 

• Skipping this part in the text 

– Almost always table-driven 

• The algorithm to build predict sets is tedious (for 
a "real" sized grammar), but relatively simple 

• It consists of three stages: 

– (1) compute FIRST sets for symbols 

– (2) compute FOLLOW sets for non-terminals 
(this requires computing FIRST sets for some strings) 

– (3) compute predict sets or table for all productions 


