
1/13/2013

1

Syntax

Syntax

• Syntax defines what is grammatically valid in a programming
language
– Set of grammatical rules

– E.g. in English, a sentence cannot begin with a period

– Must be formal and exact or there will be ambiguity in a
programming language

• We will study three levels of syntax
– Lexical

• Defines the rules for tokens: literals, identifiers, etc.

– Concrete Syntax or just “Syntax”
• Actual representation scheme down to every semicolon, i.e. every

lexical token

– Abstract Syntax – will cover in Semantics
• Description of a program’s information without worrying about specific

details such as where the parentheses or semicolons go

1/13/2013

2

BNF or Context Free Grammar

• BNF = Backus-Naur Form to specify a grammar
– Equivalent to a context free grammar

• Set of rewriting rules (a rule that can be applied multiple
times) also known as production rules defined on a set of
nonterminal symbols, a set of terminal symbols, and a start
symbol
– Terminals,  : Basic alphabet from which programs are constructed.

E.g., letters, digits, or keywords such as “int”, “main”, “{“, “}”

– Nonterminals, N : Identify grammatical categories

– Start Symbol: One of the nonterminals which identifies the principal
category. E.g., “Sentence” for english, “Program” for a programming
language

Rewriting Rules

• Rewriting Rules, ρ

– Written using the symbols  and |

 | is a separator for alternative definitions, i.e. “OR”

  is used to define a rule, i.e. “IS”

– Format
• LHS  RHS1 | RHS2 | RHS3 | …

• LHS is a single nonterminal

• RHS is any sequence of terminals and nonterminals

1/13/2013

3

Sample Grammars

• Grammar for subset of English
 Sentence  Noun Verb
 Noun  Jack | Jill
 Verb  eats | bites

• Grammar for a digit
 Digit  0 | 1 | 2 | 3 | 4 | 5 | 6 |7 |8 |9

• Grammar for signed integers
 SignedInteger  Sign Integer
 Sign  + | -
 Integer  Digit | Digit Integer

• Grammar for subset of Java
 Assignment  Variable = Expression
 Expression  Variable | Variable + Variable | Variable – Variable
 Variable  X | Y

Derivation
• Process of parsing data using a grammar

– Apply rewrite rules to non-terminals on the RHS of an existing rule

– To match, the derivation must terminate and be composed of
terminals only

• Example
 Digit  0 | 1 | 2 | 3 | 4 | 5 | 6 |7 |8 |9

 Integer  Digit | Digit Integer

– Is 352 an Integer?

 Integer → Digit Integer → 3 Integer →

 3 Digit Integer → 3 5 Integer →

 3 5 Digit → 3 5 2

Intermediate formats are called sentential forms
This was called a Leftmost Derivation since we replaced the leftmost nonterminal
symbol each time (could also do Rightmost)

1/13/2013

4

Derivation and Parse Trees

• The derivation can be
visualized as a parse
tree

Integer

Digit

3

Integer

Digit

5

Integer

2

Digit

Parse Tree Sketch for Programs

1/13/2013

5

BNF and Languages

• The language defined by a BNF grammar is the set of all
strings that can be derived
– Language can be infinite, e.g. case of integers

• A language is ambiguous if it permits a string to be parsed
into two separate parse trees
– Generally want to avoid ambiguous grammars
– Example:

• Expr  Integer | Expr + Expr | Expr * Expr | Expr - Expr
• Parse: 3*4+1

– Expr * Expr → Integer * Expr →

 3 * Expr → 3 * Expr+Expr → … 3 * 4 + 1

– Expr + Expr → Expr + Integer → Expr + 1

 Expr * Expr +1 → … 3 * 4 + 1

Ambiguity

• Example for

 AmbExp  Integer | AmbExp – AmbExp

 2-3-4

1/13/2013

6

Ambiguous IF Statement

Dangling ELSE:

 if (x<0)
 if (y<0) { y=y-1 }
 else { y=0 };

Does the else go with the first or second if?

Dangling Else Ambiguity

1/13/2013

7

How to fix ambiguity?

• Use explicit grammar without ambiguity

– E.g., add an “ENDIF” for every “IF”

 • One problem with end markers is that they tend to
bunch up. In Pascal you say

 if A = B then …

 else if A = C then …

 else if A = D then …

 else if A = E then …

 else ...;

• With end markers this becomes
 if A = B then …

 else if A = C then …

 else if A = D then …

 else if A = E then …

 else ...;

 end; end; end; end;

Ambiguity

• Fixing Ambiguity

– Java makes a separate category for if-else vs. if:
IfThenStatement  If (Expr) Statement

IfThenElseStatement  If (Expr) StatementNoShortIf else
Statement

StatementNoShortIf contains everything except IfThenStatement,
so the else always goes with the IfThenElse statement not the
IfThenStatement

• In general, we add new grammar rules that enforce
precedence

1/13/2013

8

Precedence Example

• Ambiguous
– Expr  Identifier | Integer | Expr + Expr | Expr * Expr | Expr –

Expr

• Unambiguous
– Expr  Term | Expr + Term | Expr - Term
– Term  Factor | Term * Factor
– Factor  Integer | Identifier

• Parse: 3*4+1
– Expr + Term  Term + Term  Term * Factor + Term
  Integer * Factor + Term  3 * Factor + Term 
 3 * Integer + Term  3 * 4 + Term  3 * 4 + Factor 
 3 * 4 + Integer  3 * 4 + 1

• What has precedence, + or *?

Alternative to BNF

• The use of regular expressions is a common
alternate way to express a language

 The empty string

Kleene Star

1/13/2013

9

Regex to EBNF

• Sometimes the following variations on “standard”
regular expressions are used:

 { M } means zero or more occurrences of M

 (M | N) means one of M or N must be chosen

 [M] means M is optional

Use “{“ to mean the literal { not the regex {

Regular Expressions

• Numerical literals in Pascal may be generated
by the following:

1/13/2013

10

RegEx Examples

• Booleans
– “true” | “false”

• Integers
– (0-9)+

• Identifiers
– (a-zA-Z)(a-zA-Z0-9)*

• Comments (letters/space only)
– “//”(a-zA-Z)*(“\r” | “\n” | “\r\n”)

• Simple Expressions
– Expr  Term ((+|-) Term)*
– Term  Factor ((* | /) Factor) *

• Regular expressions seem pretty powerful
– Can you write one for the language anbn? (i.e. n a’s followed by n b’s)

Regular Expressions != Context Free
Grammar

• Regular expressions express a subset of
context free grammars

– Regular Expressions  Regular Languages 
Language of a Deterministic Finite State
Automaton

– Context Free Grammars  Context Free
Languages  Language of a Pushdown
Automata

1/13/2013

11

Lexical Analysis

• Lexicon of a programming language – set of all
nonterminals from which programs are written

• Nonterminals – referred to as tokens

– Each token is described by its type (e.g. identifier,
expression) and its value (the string it represents)

– Skipping whitespace or comments

or punctuation

Categories of Lexical Tokens

• Identifiers
• Literals

Includes Integers, true, false, floats, chars
• Keywords

bool char else false float if int main true while
• Operators

= || && == != < <= > >= + - * / % ! []
• Punctuation

; . { } ()

Issues to consider: Ignoring comments, role of whitespace,

distinguising the < operator from <=, distinguishing
identifiers from keywords like “if”

1/13/2013

12

A Simple Lexical Syntax for a Small C-Like
Language

Primary  Identifier ["["Expression"]"] | Literal | "("Expression")"
 | Type "("Expression")"

Identifier  Letter (Letter | Digit)*
Letter  a | b | … | z | A | B | … Z
Digit  0 | 1 | 2 | … | 9
Literal  Integer | Boolean | Float | Char
Integer  Digit (Digit)*
Boolean  true | false
Float  Integer . Integer
Char  ‘ ASCIICHAR ‘

Scanning

• Recall scanner is responsible for

– tokenizing source

– removing comments

– (often) dealing with pragmas (i.e., significant
comments)

– saving text of identifiers, numbers, strings

– saving source locations (file, line, column) for
error messages

1/13/2013

13

Scanning
• Suppose we are building an ad-hoc (hand-

written) scanner for Pascal:
– We read the characters one at a time with

look-ahead

• If it is one of the one-character tokens
{ () [] < > , ; = + - etc }

we announce that token

• If it is a ., we look at the next character
– If that is a dot, we announce ..

– Otherwise, we announce . and reuse the look-
ahead

Scanning

• If it is a <, we look at the next character

– if that is a = we announce <=

– otherwise, we announce < and reuse the look-
ahead, etc.

• If it is a letter, we keep reading letters and
digits and maybe underscores until we can't
anymore

– then we check to see if it is a reserved word

1/13/2013

14

Scanning

• If it is a digit, we keep reading until we find
a non-digit

– if that is not a . we announce an integer

– otherwise, we keep looking for a real number

– if the character after the . is not a digit we
announce an integer and reuse the . and the
look-ahead

Scanning

• Pictorial
representation
of a Pascal
scanner as a
finite
automaton

1/13/2013

15

Scanning

• This is a deterministic finite automaton (DFA)

– Lex, scangen, etc. build these things automatically
from a set of regular expressions

– Specifically, they construct a machine that
accepts the language
identifier | int const

| real const | comment | symbol |

...

– This is the Lexical Syntax for the programming
language

Scanning

• We run the machine over and over to get one
token after another

– Nearly universal rule:

• always take the longest possible token from the input
thus foobar is foobar and never f or foo or foob

• more to the point, 3.14159 is a real const and never
3, ., and 14159

• Regular expressions "generate" a regular
language; DFAs "recognize" it

1/13/2013

16

Scanning

• Scanners tend to be built three ways
– ad-hoc

– semi-mechanical pure DFA
(usually realized as nested case statements)

– table-driven DFA

• Ad-hoc generally yields the fastest, most
compact code by doing lots of special-purpose
things, though good automatically-generated
scanners come very close

Scanning
• Writing a pure DFA as a set of nested case

statements is a surprisingly useful
programming technique

– though it's often easier to use perl, awk, sed

• Table-driven DFA is what lex and scangen
produce based on an input grammar

– lex (flex) in the form of C code

– scangen in the form of numeric tables and a
separate driver (for details see Figure 2.11)

1/13/2013

17

Scanning
• Note that the rule about longest-possible

tokens means you return only when the next
character can't be used to continue the
current token
– the next character will generally need to be saved

for the next token
• In some cases, you may need to peek at more

than one character of look-ahead in order to
know whether to proceed
– In Pascal, for example, when you have a 3 and you

a see a dot
• do you proceed (in hopes of getting 3.14)?

or
• do you stop (in fear of getting 3..5)?

Scanning

• In messier cases, you may not be able to get
by with any fixed amount of look-ahead. In
Fortran, for example, we have
 DO 5 I = 1,25 loop

 DO 5 I = 1.25 assignment

• Here, we need to remember we were in a
potentially final state, and save enough
information that we can back up to it, if we
get stuck later

1/13/2013

18

Parsing – From lexical to concrete syntax
• Terminology:

– context-free grammar (CFG)

– symbols
• terminals (tokens)

• non-terminals

– production

– derivations (left-most and right-most - canonical)

– parse trees

– sentential form

Parsing

• By analogy to RE and DFAs, a context-free

grammar (CFG) is a generator for a context-

free language (CFL)

– a parser is a language recognizer

• There is an infinite number of grammars for

every context-free language

– not all grammars are created equal, however

1/13/2013

19

Parsing

• It turns out that for any CFG we can create
a parser that runs in O(n^3) time

• There are two well-known parsing
algorithms that permit this

– Early's algorithm

– Cooke-Younger-Kasami (CYK) algorithm

• O(n^3) time is clearly unacceptable for a
parser in a compiler - too slow

Parsing

• Fortunately, there are large classes of
grammars for which we can build parsers that
run in linear time
– The two most important classes are called

LL and LR

• LL stands for
'Left-to-right, Leftmost derivation'.

• LR stands for
'Left-to-right, Rightmost derivation’

1/13/2013

20

Parsing

• LL parsers are also called 'top-down', or
'predictive' parsers & LR parsers are also called
'bottom-up', or 'shift-reduce' parsers

• There are several important sub-classes of LR
parsers

– SLR

– LALR

• We won't be going into detail on the
differences between them

Parsing

• Every LL(1) grammar is also LR(1), though right
recursion in production tends to require very
deep stacks and complicates semantic analysis

• Every CFL that can be parsed deterministically
has an SLR(1) grammar (which is LR(1))

• Every deterministic CFL with the prefix property
(no valid string is a prefix of another valid
string) has an LR(0) grammar

1/13/2013

21

Parsing

• You commonly see LL or LR written with a

number in parentheses after it

– This number indicates how many tokens of

look-ahead are required in order to parse

– Almost all real compilers use one token of look-

ahead

• This grammar is LL(1)
– idlist  idlist id | id

LL vs. LR

Input string: A, B, C;

Token list:
 A
 ,
 B
 ,
 C
 ;

1/13/2013

22

LL Parsing

• Here is an LL(1) grammar for a calculator
language (Fig 2.15):

1. program  stmt_list $$

2. stmt_list  stmt stmt_list

3. | 

4. stmt  id := expr

5. | read id

6. | write expr

7. expr  term term_tail

8. term_tail  add_op term term_tail

9. | 

LL Parsing

• LL(1) grammar (continued)
10. term  factor fact_tail

11. fact_tail  mult_op fact fact_tail

12. | 

13. factor  (expr)

14. | id

15. | number

16. add_op  +

17. | -

18. mult_op  *

19. | /

1/13/2013

23

LL Parsing
• Example program
 read A

 read B

 sum := A + B

 write sum

 write sum / 2
• First we extract tokens and find identifiers
• We start at the top and predict needed productions

on the basis of the current left-most non-terminal in
the tree and the current input token
– Called recursive descent

Recursive Descent Parser
void match(expected)
 if input_token = expected
 consume input_token
 else parse_error

void program()
 if input_token = ID, READ, WRITE, $$
 stmt_list()
 match($$)
 else parse_error

void stmt_list()
 if input_token = ID, READ, WRITE
 stmt();
 stmt_list();
 if input_token = $$
 skip
 else parse_error

1. program  stmt_list $$

2. stmt_list  stmt stmt_list

3. | 
4. Stmt  id := expr

5. | read id

6. | write expr

1/13/2013

24

Recursive Descent Parser
void stmt()
 if input_token = ID
 match(id)
 match(:=)
 expr()
 if input_token = READ
 match(read)
 match(id)
 if input_token = WRITE
 match(write)
 expr()
 else parse_error

void expr()
 if input_token = ID, NUMBER, (
 term();
 term_tail()
 else parse_error

Stmt  id := expr

 | read id

 | write expr

expr  term term_tail

term_tail  add_op term term_tail

 | 
term  factor fact_tail

factor  (expr)

 | id

 | number

Recursive Descent Parser
void term_tail()
 if input_token = +, -
 add_op()
 term()
 term_tail()
 if input_token =), ID, READ, WRITE, $$
 skip
 else parse_error

void term()
 if input_token = ID, NUMBER, (
 factor()
 factor_tail()
 else parse_error

term_tail  add_op term term_tail | ε

term  factor fact_tail

fact_tail  mult_op fact fact_tail | ε

factor  (expr)

 | id

 | number

add_op  + | -

mult_op  * | /

1/13/2013

25

Recursive Descent Parser
void factor_tail()
 if input_token = *, /
 mult_op()
 factor()
 factor_tail()
 if input_token = +,-,), ID, READ, WRITE, $$
 skip
 else parse_error

void factor()
 if input_token = ID
 match(id)
 if input_token = NUMBER
 match(number)
 if input_token = (
 match (()
 expr()
 match())
 else parse_error

term_tail  add_op term term_tail | ε

term  factor fact_tail

fact_tail  mult_op fact fact_tail | ε

factor  (expr)

 | id

 | number

add_op  + | -

mult_op  * | /

void add_op()
 if input_token = +
 match(+)
 if input_token = -
 match(-)
 else parse_error

void mult_op()
 if input_token = *
 match(*)
 if input_token = /
 match(/)
 else parse_error

Parse Tree
 read A

 read B

 sum := A + B

 write sum

 write sum / 2

1/13/2013

26

LL Parsing

• Table-driven LL parsing: you have a big loop in
which you repeatedly look up an action in a
two-dimensional table based on current
leftmost non-terminal and current input
token. The actions are

(1) match a terminal

(2) predict a production

(3) announce a syntax error

LL Parsing
• LL(1) parse table for parsing for calculator

language

1/13/2013

27

LL Parsing

• To keep track of the left-most non-terminal,
you push the as-yet-unseen portions of
productions onto a stack

– for details see Figure 2.20

• The key thing to keep in mind is that the stack
contains all the stuff you expect to see
between now and the end of the program

– what you predict you will see

LL Parsing
• Problems trying to make a grammar LL(1)

– left recursion

• example:

id_list  id | id_list , id

 equivalently

id_list  id id_list_tail

id_list_tail  , id id_list_tail

 | ε

• we can get rid of all left recursion mechanically in any
grammar

1/13/2013

28

LL Parsing
• Problems trying to make a grammar LL(1)

– common prefixes: another thing that LL parsers
can't handle
• solved by "left-factoring”

• example:

 stmt  id := expr | id (arg_list)

 equivalently

 stmt  id id_stmt_tail

 id_stmt_tail  := expr

 | (arg_list)

• we can eliminate left-factor mechanically

LL Parsing
• Note that eliminating left recursion and

common prefixes does NOT make a

grammar LL

– there are infinitely many non-LL

LANGUAGES, and the mechanical

transformations work on them just fine

– the few that arise in practice, however, can

generally be handled with kludges

1/13/2013

29

Bottom-Up and LR Parsing

• Skipping this part in the text

– Almost always table-driven

• The algorithm to build predict sets is tedious (for
a "real" sized grammar), but relatively simple

• It consists of three stages:

– (1) compute FIRST sets for symbols

– (2) compute FOLLOW sets for non-terminals
(this requires computing FIRST sets for some strings)

– (3) compute predict sets or table for all productions

