2/5/2013

Control Flow

Control Flow

» Skipping most of this chapterin class
— Skim it when reading
— WE’ll just hit on a few topics that may be new

* Basic paradigms for control flow:
— Sequencing
— Selection
— Iteration and Recursion
— Procedural Abstraction
— Concurrency
— Nondeterminacy

Precedence R

Varies from
language to
language; the
smart programmer
always uses
parentheses where
questionable to
ensure proper
precedence

Fortran Pasc

ules

(

Figure 6.1: Operator precedence levels in Fortran, Pascal, C, and Ada. The
oper

wors at the top of the figure group

most tightly

Concepts in Expression Evaluation

Ordering of operand evaluation (generally none)

Application of arithmetic identities
— commutativity (assumed to be safe)

— associativity (known to be dangerous)

(a + b)
(b + c) does not

Short Circuit

a +

+ cworks if a~=maxint and b~=minint and c<0

Variables as values vs. variables as references

Orthogonality

— Features that can be used in any combination (Algol 68)

a:
a:

if b < ¢ then d else e;
begin f(b); g(c); end;

//
!/

“returns”
“returns”

a val
a val

2/5/2013

2/5/2013

Concepts in Expression Evaluation

¢ Side Effects
— often discussed in the context of functions

— aside effect is some permanent state change caused by execution
of function

* some noticeable effect of call other than return value

* in a more general sense, assignment statements provide the ultimate
example of side effects
— they change the value of a variable

* Side Effects are fundamental to the von Neumann computing
model

* In (pure) functional, logic, and dataflow languages, there are
no such changes

— These languages are called SINGLE-ASSIGNMENT languages

— Expressions in a purely functional language are REFERENTIALLY
TRANSPARENT

Concepts in Expression Evaluation

* Boxing

— A drawback of using the primitive value model for
built-in types is they can’t be passed to methods
that expect references to objects

— Boxing is “wrapping” a primitive in an object
— Early Java: wrap explicitly using Integer, Double,
etc.

— Later Java: Automatic boxing and unboxing

Integer x = 6; //6 is boxed
Integer y = 2*x + 3; //xis unboxed, 15 is boxed

2/5/2013

Concepts in Expression Evaluation

* |nitialization

— Definite assignment: variable must have a value
assigned before being used

* Constructors

¢ Combination assignment, multiway assignment

Structured Flow

* Sequencing
— specifies a linear ordering on statements
* one statement follows another
— very imperative, Von-Neumann

* Selection
— sequential if statements or switch/select statements

if ... then ... else

if ... then ... elsif ... else

(cond
(C1) (E1)
(C2) (E2)
(Cn) (En)
(T) (Et)

2/5/2013

GOTO Statement

* Once the primary means of control flow
10 A=1
11 PRINT “HELLO”
12 A=A+1
13 IFA<100 GOTO 11
14 PRINT "DONE"

* Heavily discussed in the 60’s and 70’s
— Dijkstra — GOTO’s Considered Harmful
* Mostly abandoned in favor of structured

programming; some languages allow labels (can be
useful for immediate exit)

— Not allowed at all in Java; can’t even use the keyword

® Loops * |terators
— While, repeat, for In general we may wish to iterate over the
elements of any well-defined set
— foreach . .
) (container or collection)
* Recursion ArrayList, Set (maybe), HashTable,
— Tail recursion etc.

— No computation follows recursive call

/* assume a, b > 0 */

int gcd (int a, int b) {
if (a == b) return a;
else if (a > b) return gcd (a - b, b);
else return gcd (a, b — a);

2/5/2013

Java Collections

Collection<T>

List<T>

Implements

Abstractcollect ionets

Implements
Implements

SortedSet<T» ' Ahst:nct.&eu'rd AbstractList<T>

l / ArrayList<T> I Vector<T> l AbstractSequentiallist<T>)

TreeSet<T> I HashSet<T> I LinkeduisteT> I

Implements

Interface ’

Abstract Class)
Concrste Class l

Java lterators

* |terator used with a collection to provide sequential
access to the elements in the collection

* Methods in the Iterator<T> Interface

The Iterator<T> interface is in the java.util package.

All the exception classes mentioned are the kind that are not required to be caught in a catch
block or declared in a throws clause

NoSuchElementException is in the java.util package, which requires an import statement if
your code mentions the NoSuchElementException class. All the other exception classes men-
tioned are in the package java. lang and so do not require any import statement.

public T next()
Returns the next element of the collection that produced the iterator.
Throws a NoSuchE lementException if there is no next element.
public boolean hasNext()

Returns true if next() has not yet returned all the elements in the collection; returns false
otherwise.

public void remove() (Optional)

Removes from the collection the last element returned by next.

3
4
5
5}
7

=

9
10

11

12
13
14

15

16
17

18
19
20

21
22
23

public class HashSetIteratorDemo
{

}

public static void main(String[] args)

{

}

HashSet<String> s = new HashSet<String>(};

s.add("health");
s.add("love");
s.add("money");

System.out.println("The set contains:");

Iterator<String> i = s.iterator();
while (i.hasNext())
System.out.printin(i.next());

i.remove();

System.out.printin()
System.out.println("The set now contains:");
___— Youcannot “reset” an iterator “to the
i = s.iterator(}; a— beginning.” To do a second Iteratlon,
while (i.hasNext()) you create another iterator.
System.out.println(i.next(I H

System.out.printIn("End of program.”};

Sample Diafogue

The set contains:

money

The HashSet<T> object

love does not order the elements

health it contalns, but the ltarator
imposes an order on the

The set now contains: elements,

money

love

End of program.

Applicative and Normal-Order

Evaluation

* We normally assume all arguments are evaluated
before passing them to a subroutine

— Required for many languages so we know what to
stick on the stack

— But this need not always be the case
* Applicative Order Evaluation
— Evaluating all arguments before the call
* Normal Order Evaluation
— Evaluating only when the value is actually needed
— Used in some functional languages

2/5/2013

Normal Order Evaluation

Applicative Order is the norm

Normal Order can sometimes lead to faster code,
code that works when applicative-order
evaluation would cause a run-time error

— E.g. short circuit

Lazy Evaluation in Scheme

— Built-in functions delay and force

— Keeps track of expressions already evaluated so it can
reuse their values if they are needed more than once
* Also called memoization

* E.g.: fib(n){ if (n<=2) return n else return fib(n-1)+fib(n-2) }

2/5/2013

