
2/5/2013

1

Control Flow

Chapter 6

Control Flow

• Skipping most of this chapter in class
– Skim it when reading

– We’ll just hit on a few topics that may be new

• Basic paradigms for control flow:
– Sequencing

– Selection

– Iteration and Recursion

– Procedural Abstraction

– Concurrency

– Nondeterminacy

2/5/2013

2

Precedence Rules

• Varies from
language to
language; the
smart programmer
always uses
parentheses where
questionable to
ensure proper
precedence

Concepts in Expression Evaluation
• Ordering of operand evaluation (generally none)

• Application of arithmetic identities

– commutativity (assumed to be safe)

– associativity (known to be dangerous)
(a + b) + c works if a~=maxint and b~=minint and c<0

a + (b + c) does not

• Short Circuit

• Variables as values vs. variables as references

• Orthogonality

– Features that can be used in any combination (Algol 68)

a:= if b < c then d else e; // “returns” a val

a:= begin f(b); g(c); end; // “returns” a val

2/5/2013

3

Concepts in Expression Evaluation
• Side Effects

– often discussed in the context of functions

– a side effect is some permanent state change caused by execution
of function
• some noticeable effect of call other than return value

• in a more general sense, assignment statements provide the ultimate
example of side effects

– they change the value of a variable

• Side Effects are fundamental to the von Neumann computing
model

• In (pure) functional, logic, and dataflow languages, there are
no such changes
– These languages are called SINGLE-ASSIGNMENT languages

– Expressions in a purely functional language are REFERENTIALLY
TRANSPARENT

Concepts in Expression Evaluation

• Boxing

– A drawback of using the primitive value model for

built-in types is they can’t be passed to methods

that expect references to objects

– Boxing is “wrapping” a primitive in an object

– Early Java: wrap explicitly using Integer, Double,

etc.

– Later Java: Automatic boxing and unboxing
Integer x = 6; //6 is boxed

Integer y = 2*x + 3; //x is unboxed, 15 is boxed

2/5/2013

4

Concepts in Expression Evaluation

• Initialization

– Definite assignment: variable must have a value

assigned before being used

• Constructors

• Combination assignment, multiway assignment

• Sequencing
– specifies a linear ordering on statements

• one statement follows another

– very imperative, Von-Neumann

• Selection
– sequential if statements or switch/select statements

if ... then ... else

if ... then ... elsif ... else

(cond

(C1) (E1)

(C2) (E2)

...

(Cn) (En)

(T) (Et)

)

Structured Flow

2/5/2013

5

GOTO Statement

• Once the primary means of control flow

• Heavily discussed in the 60’s and 70’s
– Dijkstra – GOTO’s Considered Harmful

• Mostly abandoned in favor of structured
programming; some languages allow labels (can be
useful for immediate exit)
– Not allowed at all in Java; can’t even use the keyword

10 A = 1
11 PRINT “HELLO”
12 A = A + 1
13 IF A < 100 GOTO 11
14 PRINT "DONE"

Iteration

• Loops
– While, repeat, for
– foreach

• Recursion
– Tail recursion
– No computation follows recursive call

/* assume a, b > 0 */

int gcd (int a, int b) {

if (a == b) return a;

else if (a > b) return gcd (a - b, b);

else return gcd (a, b – a);

}

• Iterators
In general we may wish to iterate over the
elements of any well-defined set
(container or collection)

ArrayList, Set (maybe), HashTable,
etc.

2/5/2013

6

Java Collections

Java Iterators
• Iterator used with a collection to provide sequential

access to the elements in the collection

• Methods in the Iterator<T> Interface

2/5/2013

7

Applicative and Normal-Order
Evaluation

• We normally assume all arguments are evaluated
before passing them to a subroutine
– Required for many languages so we know what to

stick on the stack

– But this need not always be the case

• Applicative Order Evaluation
– Evaluating all arguments before the call

• Normal Order Evaluation
– Evaluating only when the value is actually needed

– Used in some functional languages

2/5/2013

8

Normal Order Evaluation

• Applicative Order is the norm
• Normal Order can sometimes lead to faster code,

code that works when applicative-order
evaluation would cause a run-time error
– E.g. short circuit

• Lazy Evaluation in Scheme
– Built-in functions delay and force
– Keeps track of expressions already evaluated so it can

reuse their values if they are needed more than once
• Also called memoization
• E.g.: fib(n) { if (n<=2) return n else return fib(n-1)+fib(n-2) }

