Data Types, Memory

Data Types

* Values held in machine locations

* Integers, reals, characters, Booleans are built into
languages as primitive types
— Machine location directly contains the value

— Efficiently implemented, likely understood by the
instruction set

e Others built on top of them : structured types
— Laid out in sequence of locations in the machine
— Arrays, records, pointers.

— Hopefully can be treated as first class citizens

* A first class citizen can be passed as a parameter, returned from a
subroutine, or assigned into a variable.

Data Types

* What are types good for?
— implicit context

— checking - make sure that certain meaningless
operations do not occur

* type checking cannot prevent all meaningless
operations

* |t catches enough of them to be useful

* Polymorphism results when the compiler finds
that it doesn't need to know certain things

Data Types

* STRONG TYPING has become a popular buzz-
word

— like structured programming

— informally, it means that the language prevents
you from applying an operation to data on which
It is not appropriate

 STATIC TYPING means that the compiler can
do all the checking at compile time

Type Systems

 Examples

—Common Lisp is strongly typed, but not
statically typed

— Ada is statically typed
— Pascal is almost statically typed

—Java is strongly typed, with a non-trivial
mix of things that can be checked statically
and things that have to be
checked dynamically

Type Systems

Common terms:

— discrete types — countable
* integer
* boolean
e char
* enumeration
* subrange

— Scalar types - one-dimensional

e discrete
* real

Type Systems

 Composite or structured types:
— records (unions)
— arrays
* strings
— sets
— pointers
— lists
— files

Variant Records and Unions

Back when memory was scarce...

— Variant records allowed two or more different
fields to share the same block of memory

— Called Variant in Pascal, Union in C
union myUnion {

inti; // 32 bits of storage
floatf; // Same 32 bits of storage

|5

Union myUnion u;

How might we do something in

u.i accesses storage as Integer Java that allows accesses to a value
u.f accesses storage as float that might be of different types?

Records (Structures)

 Memory layout and its impact (structures)

4 bytes/32 bits struct element {
char name|[2];

hane _ int atomic_number;

SR SR double atomic_weight;
| momlawelght 00 bool metallic;

}

Figure 7.1: Likely layout in memory for objects of type element on a 32-bit
machine. Alignment restrictions lead to the shaded “holes.”

Type Systems

ORTHOGONALITY is a useful goal in the design of a
language, particularly its type system

— A collection of features is orthogonal if there are no restrictions
on the ways in which the features can be combined (analogy
to vectors)

For example

— Pascal is more orthogonal than Fortran, (because it allows arrays
of anything, for instance), but it does not permit variant records
as arbitrary fields of other records (for instance)

Orthogonality is nice primarily because it makes a language
easy to understand, easy to use, and easy to reason about

Type Checking

e ATYPE SYSTEM has rules for

— type equivalence (when are the types of two values the
same?)

— type compatibility (when can a value of type A be used in a
context that expects type B?)

— type inference (what is the type of an expression, given
the types of the operands?)
* Type compatibility / type equivalence

— Compatibility is the more useful concept, because it tells
you what you can DO

— The terms are often (incorrectly, but we do it too) used
interchangeably.

Type Equivalence

 Sometimes we need to know when two types
are equivalent, but this can be trickier than it

sounds

struct complex ({
float re, im;
};
struct polar {
float x, y;
};
struct {
float re, im;
} a, b;
struct complex c, d;
struct polar e;
int £[5], g[10];
// which are equivalent types?

Type Checking

 Two major approaches: structural equivalence
and name equivalence

— Name Equivalence

* Two types are the same if they have the same name

— Structural Equivalence
* Two types are the same if they have the same structure

e Structural equivalence depends on simple comparison of
type descriptions substitute out all names

— expand all the way to built-in types
— Name equivalence is more fashionable these days

Type Checking

e Coercion

— When an expression of one type is used in a
context where a different type is expected, one
normally gets a type error

— But what about
var a : 1nteger; b, ¢ : real;

c := a + b;

Type Checking

e Coercion

— Many languages allow things like this, and COERCE
an expression to be of the proper type

— Coercion can be based just on types of operands,
or can take into account expected type from
surrounding context as well

— Fortran has lots of coercion, all based on operand
type

Type Checking

* C has lots of coercion, too, but with simpler rules:
— all f1oats in expressions become doubles
— short int and char become int in expressions

— if necessary, precision is removed when assigning into LHS

* |n effect, coercion rules are a relaxation of type checking
— Recent thought is that this is probably a bad idea

— Languages such as Modula-2 and Ada do not permit
coercions

— C++, however, goes hog-wild with them

— They're one of the hardest parts of the language to
understand

Functions as Types

 Some languages allow functions to behave as “first
class citizens”

— Function can be treated like a data type or variable
— Can pass a function as an argument

* Pascal example:

— function newton(a, b: real; function f: real): real;

— Know that f returns a real value, but the arguments to f are
unspecified.

Java Example

public interface RootSolvable {
double valueAt(double x);

}

public class MySolver implements RootSolvable

{
double valueAt(double x) mysolver = new MySolver();
{ z = Newton(a,b,mysolver);
}

}

public double Newton(double a, double b, RootSolvable f)
{

Not a true first-class citizen
val = f.valueAt(x); since a function can’t be

constructed and returned
} by another function

Arrays

A sequence of elements of the same type stored consecutively
in memory

Element can be accesses quickly [O(1)]
Accessed via indexing
— AJi] : i index
Index is often an integer but does not have to be

— Must be efficiently computed

— Here we are not including “associative” arrays that are really more
like hash tables

When is array bound computed?
When is the space for the array allocated?

Where is the space for the array allocated?
— Java: from the Heap

Array Initialization

* Should the values in an array be pre-
initialized?
— Java initializes all values to O or null

— C/C++ do no initialization, array contains whatever
values happen to be sitting in memory

* |ssue of efficiency

Arrays in Pascal

 May have any range of indices
array [21-30] of real

 May have non integer indexes
array [(Mon, Tue, Wed, Thu, Fri)] of integer;

array |char] of token:
type token = (plus, minus, times, divide, number,
lparen, rparen, semi):
* These non-integer values really map to integer values
internally for efficiency purposes
— E.g. Mon=0,Tue=1, Wed=2, etc.

Arrays

e Should array type include bounds?

e Pascal did and it causes some problems
— typeof(A[10]) # typeof(A[100])

* Function arguments with arrays are
problematic

— Sort function with an array size of size 10 can’t
take array of size 9

— Instead must pass array bounds as parameters

Arrays
Layout

e Determines the machine address of the i'th
element relative to the address of the first

element

* Different from allocation
— Reserve actual machine memory for the array

* The elements of the array appear in
consecutive locations

Arrays

Layout(C/Java-Like Language)

Stack

y(A[O])
size (n)
element type

element size (e)

int[] A = new int[10];

v(A[i]) = v(A[O])+e*i
0<=i<n

10

TRt

i ALO]
AL2]

g | -

Heap

> “dope vector™

AL9]

e=element size, i=index

Strongly typed language requires
checking type in dope vector

Arrays

var A : array [low .. high] of T

base
— Starting address of the first element A[low]

width

— size of an element of type T
The elements are stored at

— base, base+width, base + 2*width
Address of A[i] computed in 2 parts

— Compile time : offset from base
— Run time : location of base

Arrays

Address of Ali]

= base +(i-low)*width

= i*width + (base-low*width)

(base-low*width) may be precomputed and stored

— This is generally the value associated with an array
variable

i*width : must be computed at runtime
If low=0
— Address of A[i] = i*width + base

Time to compute the address is independent of i
— So we get O(1) or constant access time

.

..

........

LT
.

............

: T s o L] S : S5 S 7 Lo] L |
VAR R Y R Y T Y

Row-major order Column-major order

Row- and column-major memory layout for two-dimensional arrays.

In row-ma jor order. the elements of a row are contiguous in memory: in column-ma jor order,
the elements of a column are contiguous. The second cache line of each array is shaded, on
the assumption that each element is an eight-byte floating-point number. that cache lines
are 32 bytes long (a common size). and that the array begins at a cache line boundary.
If the array is indexed from A[0,0] to A[9,0], then in the row-major case elements A[0,4]
through A[0,7] share a cache line: in the column-major case elements A[4,0] through A[7,0]
share a cache line.

Multidimensional Arrays

Common in all languages
— C : A[200][200]

Allocated in linear fashion
Row major

— Store by rows: row 1, row 2, row 3,

Column major
— Store by columns

Multidimensional Arrays
Layout(C/Java-Like)

Row major order

Heap

| | CLOJLO]
Stack | |
CLO1L2]

y(C[0][0]) — | 5
rows (m) 4 CL1]1L0]
columns (n) 3 > “dope vector” CC1IC1]
element type | char CL11C2]
element size (e) % ? CL2]1L0]
CL2]1[1]
char[][] C = new char[4][3]; CL2]1[2]
v(C[il[j]) = v(C[0][0])+e*(ni+j) CL31[0]

O<=i<mand0<=j<n

CL31[1]
CL3A[2]

Multidimensional Arrays

(j-low2)
e Address of MJi]]j] b b+l b+2
b+3 | b+4 | b+5
base + (I-low,)*w, + (J-low,)*w, b+6 | b+7 | b+8 | (iHow1)

—w, : widthof arow = w,*n,

—w, : width of an element

—n, : number of elements in a column
—n, : number of elementsin arow = high,-low, +1

e Fixed part: base — low*w, — low,*W,
e Variable part : "W, + J*w,

Multi-D Arrays(Java)

* Java actually stores only 1D arrays; multi-dimensional
arrays are references to other arrays

int[][] nums = new int[4][3];

Strings

e Strings are typically just arrays of characters

* They are often special-cased, to give them
flexibility (like polymorphism
or dynamic sizing) that is not available for
arrays in general
— It's easier to provide these things for strings than

for arrays in general because strings are one-
dimensional and (more important) non-circular

Dangling Pointers

Structures or Classes are often used as nodes
within dynamic data structures, such as linked
lists

Raises the possibility of the dangling pointer

— A pointer to storage used for another purpose and
the storage is subsequently deallocated

Garbage

— Allocated but inaccessible memory locations

Programs that create garbage are said to have
memory leaks

Dangling Pointer Example

class node {

int value, node next

null

}. node

P —> P —>
node p, g; 7
P = new node(); q —> q
g = new node(); (a) (b)
a=p “dangling reference”
delete(p);

“orphan”

(¢)

Memory Leak Terms

* Dangling reference/Widow

— A pointer to storage used for another purpose
and the storage is subsequently deallocated

* Garbage/Orphan

— Allocated but inaccessible memory locations

* Programs that create garbage are said to have
memory leaks

Avoiding Garbage

Many languages ask the programmer to explicitly manage the
heap, where memory is allocated

— C, C++,...
— User must make sure to destroy everything that is allocated

— Memory management is generally not central to the problem the
programmer is trying to solve

— What if something is missed? Easy to do...

void foo()

{

p = new node();
if (b) return;
delete(p);

}

Interpreted and functional languages generally do automatic
garbage collection

— Java, C#, Lisp,...

Garbage Collection

* Motivation from functional programming
* Increased importance due to OOP

How do we reduce/eliminate the burden of
memory management from the programmer?

Garbage Collection Algorithms

Reference counting
Mark-Sweep
Copy collection

In Java

— The garbage collector runs as a low-priority
thread. It is automatic but it can be explicitly
called by: System.gc() (regardless of the state of
the heap at the time of the call).

Garbage Collection
Reference Counting

* Free List

— Heap is a continuous chain of nodes called the free list

* Implemented various ways, we’ll skip implementation

— Each node has an extra field to keep a count as well as a field to keep
track of the node size

* Reference Count
— Number of pointers referencing that node
— Initially set to O

n'Waords
- Elock header

refCount

— — =+——Elock data area

Garbage Collection
Reference Counting

Node creation via new()
— Get nodes from the free list
— Set reference count to 1

Pointer Assignment

— €.8.p=q;
— Increment the reference count of q by 1
— Decrement the reference count of p by 1

* |If zero, nothing references p so it is safe to delete

— must also decrement reference count for any pointer in p’s data
area by one. If one of these counts becomes zero, repeat for it’s
descendants

— Destroy p
— Then perform the assignment

Garbage Collection
Reference Counting

 Pointer Deletion

— e.g. delete p;

— Decrement p’s reference count
If refcount ==
For every pointer g in p’s data area
delete g
Put p on the free list

Set p to null

Garbage Collection
Reference Counting

* The algorithm is activated dynamically on
- NEw

— Delete

— assignment

* Advantages
— Very simple, fast, non-compacting garbage collection

— Heap maintenance spread throughout program
execution (instead of suspending the program when the
garbage collector runs)

— Must not forget to adjust reference counts on any
pointer assignment (including passing pointers as
subroutine arguments), or disaster can happen

Reference Counting Example

node p, g, t;

P = new node ()

g = new node (),

p.next = qg;
if p.next pointed
to something, we’d
decrement the ref

t = new node();

Reference Counting Example

P—
q —
P—

L.next = qg;

t
q

g = new node() P —

delete qg; P, t
q
=QJ

i

Reference Counting Example

g.next = p;

delete t;

Reference Counting Example

delete p;

delete g;

Garbage Collection

Reference Counting

free_list —

P —

q/‘

(— Reference count (RC)

_>i()

/——-

N\

null

Reference Counting

Minor Problem — Storage overhead for reference count

Major Problem - Can’t handle circular chains of nodes

(Reference count (RC)

free_list ——» 0 ——0 > —0 null
i
| \ \
0)])
Pp—1—373 null

p-next=null;

0

Garbage Collection
Mark-Sweep

* Unlike reference counting, called when the heap
becomes full

— i.e. free list becomes empty

* Orphans are reassigned to the free list
— Possibly large number of nodes
— May be time consuming

— Advantage over reference counting is it reclaims all
garbage, even those in circular chains

e 2 Pass algorithm
— 15t pass: Mark all the nodes if they are accessible
— 2" pass: Reassign the orphans

Garbage Collection
Mark-Sweep

e Mark Phase

— Start with the active variables

— Follow the links and “mark” the nodes that can be
accessed

— All unmarked nodes are orphans
 Sweep Phase
— Follow all nodes in the heap

— If the node is unmarked return to free list
— Unmark all nodes that were not returned

Garbage Collection
Mark-Sweep

mark bit (MB) w
B | L0
[~ o
q / -
— Y
Lo
h
free_list
Pao | 4 P
31 o
q _—T1 -- q
free_list —

After Mark Phase After Sweep Phase

Online Demo

* Heap of Fish
* http://www.artima.com/insidejvm/applets/HeapOfFish.html

Garbage Collection
Mark-Sweep

* Advantages

— Not invoked unless needed
 Small programs don’t need it

* Typically perform a large number of new/delete before this is
needed

— Reclaims all garbage

* No problem with circular chains
— Reduced memory overhead

* Integer vs. a bit

* Disadvantages

— Time consuming when used
e 2 pass algorithm

Garbage Collection
Copy Collection aka Stop and Copy

* Time-space compromise compared to Mark-Sweep
* Also invoked only when heap becomes full

e Significantly faster than Mark-Sweep
— Only 1 pass over the heap
— But heap size is effectively reduced by half

* j.e. copy collection uses a lot more memory, (but this is not as bad
as it sounds if using virtual memory, can still have data in all
available physical memory)

Garbage Collection
Copy Collection

* Divide the heap into two equal halves
— from_space: All active nodes are kept here.
— to_space: Used as a copy buffer
When the from _space becomes full

— All accessible nodes are copied into to _space
 The descendents are copied as well
e Copying to the to_space called Forwarding
* Everythingin the from space is then added to the free list

— Swap the roles of from space and to_space
— Eliminates the inaccessible nodes

— Skipping some details here of allocating nodes from the
free list of the to_space

Garbage Collection
Copy Collection

free_list —

B

Initial Heap Organization

A

| = 1= 1y =% [=*
B, A

- null
n

After Copy Collection Activation

Efficiency of Copy Collection vs. Mark
Sweep

M = heap size

R = amount of live memory

r = R/M s the residency

m = amount of memory reclaimed

{ = time needed for reclaiming memory

e =m/t Is the efficiency of garbage
collection (memory reclaimed per time)

Efficiency Continued

* Comparison:

{opy = @R t,s =PbR+cM
M
mcopyz?—R My =M —R
M 1 1 1 | |
ecopy - = — — Since r < 1, copy collection
2aR a Z2ar a better for small r
M-R 1-r

As r increases, mark sweep

eMS - bR 4+ CM - br +C becomes more efficient
(as r approaches M/2)

Garbage Collection Today

 Many newer, complex algorithms proposed

* Active area of research
— Incremental garbage collectors
— Efficient garbage collectors (e.g., no recursion)

— Generational garbage collectors

* Separate objects that are in a young/old generation; older are
more likely to survive, so might only scan younger generations,
condemn older generations less frequently

* Hard to judge algorithm in isolation

— Often must consider hardware considerations such as
paging, virtual memory

