
Data Types, Memory

Data Types

• Values held in machine locations
• Integers, reals, characters, Booleans are built into

languages as primitive types
– Machine location directly contains the value
– Efficiently implemented, likely understood by the

instruction set

• Others built on top of them : structured types
– Laid out in sequence of locations in the machine
– Arrays, records, pointers.
– Hopefully can be treated as first class citizens

• A first class citizen can be passed as a parameter, returned from a
subroutine, or assigned into a variable.

Data Types

• What are types good for?
– implicit context

– checking - make sure that certain meaningless
operations do not occur
• type checking cannot prevent all meaningless

operations

• It catches enough of them to be useful

• Polymorphism results when the compiler finds

that it doesn't need to know certain things

Data Types

• STRONG TYPING has become a popular buzz-
word

– like structured programming

– informally, it means that the language prevents
you from applying an operation to data on which
it is not appropriate

• STATIC TYPING means that the compiler can
do all the checking at compile time

Type Systems

• Examples
–Common Lisp is strongly typed, but not

statically typed

–Ada is statically typed

–Pascal is almost statically typed

– Java is strongly typed, with a non-trivial
mix of things that can be checked statically
and things that have to be
checked dynamically

Type Systems

• Common terms:
– discrete types – countable

• integer

• boolean

• char

• enumeration

• subrange

– Scalar types - one-dimensional
• discrete

• real

Type Systems

• Composite or structured types:

– records (unions)

– arrays

• strings

– sets

– pointers

– lists

– files

Variant Records and Unions

• Back when memory was scarce…

– Variant records allowed two or more different
fields to share the same block of memory

– Called Variant in Pascal, Union in C

union myUnion {
int i; // 32 bits of storage
float f; // Same 32 bits of storage

};

Union myUnion u;

u.i accesses storage as Integer
u.f accesses storage as float

How might we do something in
Java that allows accesses to a value
that might be of different types?

Records (Structures)

• Memory layout and its impact (structures)

struct element {
char name[2];
int atomic_number;
double atomic_weight;
bool metallic;

}

Type Systems

• ORTHOGONALITY is a useful goal in the design of a
language, particularly its type system
– A collection of features is orthogonal if there are no restrictions

on the ways in which the features can be combined (analogy
to vectors)

• For example
– Pascal is more orthogonal than Fortran, (because it allows arrays

of anything, for instance), but it does not permit variant records
as arbitrary fields of other records (for instance)

• Orthogonality is nice primarily because it makes a language
easy to understand, easy to use, and easy to reason about

Type Checking

• A TYPE SYSTEM has rules for
– type equivalence (when are the types of two values the

same?)

– type compatibility (when can a value of type A be used in a
context that expects type B?)

– type inference (what is the type of an expression, given
the types of the operands?)

• Type compatibility / type equivalence
– Compatibility is the more useful concept, because it tells

you what you can DO
– The terms are often (incorrectly, but we do it too) used

interchangeably.

Type Equivalence

• Sometimes we need to know when two types
are equivalent, but this can be trickier than it
sounds

struct complex {

float re, im;

};

struct polar {

float x, y;

};

struct {

float re, im;

} a, b;

struct complex c, d;

struct polar e;

int f[5], g[10];

// which are equivalent types?

Type Checking

• Two major approaches: structural equivalence
and name equivalence

– Name Equivalence

• Two types are the same if they have the same name

– Structural Equivalence

• Two types are the same if they have the same structure

• Structural equivalence depends on simple comparison of
type descriptions substitute out all names

– expand all the way to built-in types

– Name equivalence is more fashionable these days

Type Checking

• Coercion

– When an expression of one type is used in a

context where a different type is expected, one

normally gets a type error

– But what about

var a : integer; b, c : real;

...

c := a + b;

Type Checking

• Coercion

– Many languages allow things like this, and COERCE

an expression to be of the proper type

– Coercion can be based just on types of operands,

or can take into account expected type from

surrounding context as well

– Fortran has lots of coercion, all based on operand

type

Type Checking

• C has lots of coercion, too, but with simpler rules:

– all floats in expressions become doubles

– short int and char become int in expressions

– if necessary, precision is removed when assigning into LHS

• In effect, coercion rules are a relaxation of type checking

– Recent thought is that this is probably a bad idea

– Languages such as Modula-2 and Ada do not permit
coercions

– C++, however, goes hog-wild with them

– They're one of the hardest parts of the language to
understand

Functions as Types

• Some languages allow functions to behave as “first
class citizens”

– Function can be treated like a data type or variable

– Can pass a function as an argument

• Pascal example:

– function newton(a, b: real; function f: real): real;

– Know that f returns a real value, but the arguments to f are
unspecified.

Java Example

public interface RootSolvable {
double valueAt(double x);

}

public class MySolver implements RootSolvable
{

double valueAt(double x)
{

…
}

}

public double Newton(double a, double b, RootSolvable f)
{

…
val = f.valueAt(x);
…

}

Not a true first-class citizen
since a function can’t be
constructed and returned
by another function

mysolver = new MySolver();
z = Newton(a,b,mysolver);

Arrays

• A sequence of elements of the same type stored consecutively
in memory

• Element can be accesses quickly [O(1)]
• Accessed via indexing

– A[i] : i→ index

• Index is often an integer but does not have to be
– Must be efficiently computed
– Here we are not including “associative” arrays that are really more

like hash tables

• When is array bound computed?
• When is the space for the array allocated?
• Where is the space for the array allocated?

– Java: from the Heap

Array Initialization

• Should the values in an array be pre-
initialized?

– Java initializes all values to 0 or null

– C/C++ do no initialization, array contains whatever
values happen to be sitting in memory

• Issue of efficiency

Arrays in Pascal

• May have any range of indices
array [21-30] of real

• May have non integer indexes

array [(Mon,Tue, Wed,Thu,Fri)] of integer;

array [char] of token;

type token = (plus, minus, times, divide,number,
lparen, rparen, semi);

• These non-integer values really map to integer values
internally for efficiency purposes

– E.g. Mon=0,Tue=1, Wed=2, etc.

Arrays

• Should array type include bounds?

• Pascal did and it causes some problems
– typeof(A[10]) ≠ typeof(A[100])

• Function arguments with arrays are
problematic
– Sort function with an array size of size 10 can’t

take array of size 9

– Instead must pass array bounds as parameters

Arrays
Layout

• Determines the machine address of the i’th
element relative to the address of the first
element

• Different from allocation

– Reserve actual machine memory for the array

• The elements of the array appear in
consecutive locations

Arrays
Layout(C/Java-Like Language)

int[] A = new int[10];
γ(A[i]) = γ(A[0])+e*i
0 <= i < n

e=element size, i=index

Strongly typed language requires
checking type in dope vector

Arrays

var A : array [low .. high] of T
• base

– Starting address of the first element A[low]

• width
– size of an element of type T

• The elements are stored at
– base, base+width, base + 2*width ….

• Address of A[i] computed in 2 parts
– Compile time : offset from base
– Run time : location of base

Arrays

• Address of A[i]
= base +(i-low)*width
= i*width + (base-low*width)

• (base-low*width) may be precomputed and stored
– This is generally the value associated with an array

variable

• i*width : must be computed at runtime
• If low = 0

– Address of A[i] = i*width + base

• Time to compute the address is independent of i
– So we get O(1) or constant access time

Arrays

Multidimensional Arrays

• Common in all languages

– C : A[200][200]

• Allocated in linear fashion

• Row major

– Store by rows: row 1, row 2, row 3, ….

• Column major

– Store by columns

Multidimensional Arrays
Layout(C/Java-Like)

char[][] C = new char[4][3];
γ(C[i][j]) = γ(C[0][0])+e*(ni+j)
0 <= i < m and 0 <=j < n

Row major order

Multidimensional Arrays

• Address of M[i][j]

1row ain elements ofnumber

column ain elements ofnumber

elementan ofwidth

row a ofwidth –

222

1

2

221

2211

-low high : –n

 : –n

 : –w

*n w : w

)*w (j-low)*w (i-lowbase

• Fixed part :

• Variable part :

2211 *w – low*wbase – low

21 j*wi*w

b b+1 b+2

b+3 b+4 b+5

b+6 b+7 b+8

(j-low2)

(i-low1)

Multi-D Arrays(Java)

• Java actually stores only 1D arrays; multi-dimensional
arrays are references to other arrays

int[][] nums = new int[4][3];

Strings

• Strings are typically just arrays of characters

• They are often special-cased, to give them

flexibility (like polymorphism

or dynamic sizing) that is not available for

arrays in general

– It's easier to provide these things for strings than

for arrays in general because strings are one-

dimensional and (more important) non-circular

Dangling Pointers

• Structures or Classes are often used as nodes
within dynamic data structures, such as linked
lists

• Raises the possibility of the dangling pointer
– A pointer to storage used for another purpose and

the storage is subsequently deallocated

• Garbage
– Allocated but inaccessible memory locations

• Programs that create garbage are said to have
memory leaks

Dangling Pointer Example

class node {

int value, node next

};

node p, q;

p = new node();

q = new node();

q = p;

delete(p);

“orphan”

“dangling reference”

Memory Leak Terms

• Dangling reference/Widow
– A pointer to storage used for another purpose

and the storage is subsequently deallocated

• Garbage/Orphan
– Allocated but inaccessible memory locations

• Programs that create garbage are said to have
memory leaks

Avoiding Garbage
• Many languages ask the programmer to explicitly manage the

heap, where memory is allocated
– C, C++,…
– User must make sure to destroy everything that is allocated
– Memory management is generally not central to the problem the

programmer is trying to solve
– What if something is missed? Easy to do…

void foo()
{

p = new node();
if (b) return;
delete(p);

}

• Interpreted and functional languages generally do automatic
garbage collection
– Java, C#, Lisp,…

Garbage Collection

• Motivation from functional programming

• Increased importance due to OOP

How do we reduce/eliminate the burden of
memory management from the programmer?

Garbage Collection Algorithms

• Reference counting

• Mark-Sweep

• Copy collection

• In Java
– The garbage collector runs as a low-priority

thread. It is automatic but it can be explicitly
called by: System.gc() (regardless of the state of
the heap at the time of the call).

Garbage Collection
Reference Counting

• Free List
– Heap is a continuous chain of nodes called the free list

• Implemented various ways, we’ll skip implementation

– Each node has an extra field to keep a count as well as a field to keep
track of the node size

• Reference Count
– Number of pointers referencing that node

– Initially set to 0

Garbage Collection
Reference Counting

• Node creation via new()
– Get nodes from the free list
– Set reference count to 1

• Pointer Assignment
– e.g. p=q;
– Increment the reference count of q by 1
– Decrement the reference count of p by 1

• If zero, nothing references p so it is safe to delete
– must also decrement reference count for any pointer in p’s data

area by one. If one of these counts becomes zero, repeat for it’s
descendants

– Destroy p

– Then perform the assignment

Garbage Collection
Reference Counting

• Pointer Deletion

– e.g. delete p;

– Decrement p’s reference count
If refcount == 0

For every pointer q in p’s data area
delete q

Put p on the free list

Set p to null

Garbage Collection
Reference Counting

• The algorithm is activated dynamically on
– new
–Delete
– assignment

• Advantages
– Very simple, fast, non-compacting garbage collection
– Heap maintenance spread throughout program

execution (instead of suspending the program when the
garbage collector runs)

– Must not forget to adjust reference counts on any
pointer assignment (including passing pointers as
subroutine arguments), or disaster can happen

Reference Counting Example

node p, q, t;

p = new node();

q = new node();

p.next = q;

t = new node();

1
p

1
q

1
p

2
q

if p.next pointed
to something, we’d
decrement the ref

1
p

2
q 1

t

Reference Counting Example

t.next = q;

delete q;

q = new node();

1
p

2
q 1

t

1
p

3
q

1
t

1
p

2
q

1
t

1
p

2
q

1

1

t

Reference Counting Example

q.next = p;

delete t;

t
1

p

2
q

1

1

t
2

p

2
q

1

1

t
2

p

2
q

0

1

t
2

1
q

1

p

Reference Counting Example

delete p;

delete q;

t
2

1
q

1

p

t
1

1
q

1

p

1

1
q

0

0

1
q

0

Garbage Collection
Reference Counting

Reference Counting

• Minor Problem – Storage overhead for reference count

• Major Problem - Can’t handle circular chains of nodes

p.next=null;

Garbage Collection
Mark-Sweep

• Unlike reference counting, called when the heap
becomes full
– i.e. free list becomes empty

• Orphans are reassigned to the free list
– Possibly large number of nodes
– May be time consuming
– Advantage over reference counting is it reclaims all

garbage, even those in circular chains

• 2 Pass algorithm
– 1st pass: Mark all the nodes if they are accessible
– 2nd pass: Reassign the orphans

Garbage Collection
Mark-Sweep

• Mark Phase

– Start with the active variables

– Follow the links and “mark” the nodes that can be
accessed

– All unmarked nodes are orphans

• Sweep Phase

– Follow all nodes in the heap

– If the node is unmarked return to free list

– Unmark all nodes that were not returned

Garbage Collection
Mark-Sweep

After Mark Phase After Sweep Phase

Online Demo

• Heap of Fish

• http://www.artima.com/insidejvm/applets/HeapOfFish.html

Garbage Collection
Mark-Sweep

• Advantages
– Not invoked unless needed

• Small programs don’t need it

• Typically perform a large number of new/delete before this is
needed

– Reclaims all garbage
• No problem with circular chains

– Reduced memory overhead
• Integer vs. a bit

• Disadvantages
– Time consuming when used

• 2 pass algorithm

Garbage Collection
Copy Collection aka Stop and Copy

• Time-space compromise compared to Mark-Sweep

• Also invoked only when heap becomes full

• Significantly faster than Mark-Sweep

– Only 1 pass over the heap

– But heap size is effectively reduced by half
• i.e. copy collection uses a lot more memory, (but this is not as bad

as it sounds if using virtual memory, can still have data in all
available physical memory)

Garbage Collection
Copy Collection

• Divide the heap into two equal halves
– from_space: All active nodes are kept here.
– to_space: Used as a copy buffer
When the from_space becomes full
– All accessible nodes are copied into to_space

• The descendents are copied as well
• Copying to the to_space called Forwarding
• Everything in the from_space is then added to the free list

– Swap the roles of from_space and to_space
– Eliminates the inaccessible nodes
– Skipping some details here of allocating nodes from the

free list of the to_space

Garbage Collection
Copy Collection

Initial Heap Organization After Copy Collection Activation

Efficiency of Copy Collection vs. Mark
Sweep

• M = heap size

• R = amount of live memory

• r = R/M is the residency

• m = amount of memory reclaimed

• t = time needed for reclaiming memory

• e =m/t is the efficiency of garbage

collection (memory reclaimed per time)

Efficiency Continued

• Comparison:

cbr

r

cMbR

RM
e

aaraaR

M
e

RMmR
M

m

cMbRtaRt

MS

copy

MScopy

MScopy

1

1

2

1

1

2

2

Since r < 1, copy collection
better for small r

As r increases, mark sweep
becomes more efficient
(as r approaches M/2)

Garbage Collection Today

• Many newer, complex algorithms proposed

• Active area of research
– Incremental garbage collectors

– Efficient garbage collectors (e.g., no recursion)

– Generational garbage collectors
• Separate objects that are in a young/old generation; older are

more likely to survive, so might only scan younger generations,
condemn older generations less frequently

• Hard to judge algorithm in isolation
– Often must consider hardware considerations such as

paging, virtual memory

