2/10/2013

OOP and Dynamic Method
Binding

Object Oriented Programming

» Skipping most of this chapter
* Focus on 9.4, Dynamic method binding
— Polymorphism or Subtype Polymorphism
* One of three key factors in OOP
— Encapsulation of data and methods (data hiding)
— Inheritance
— Dynamic method binding

2/10/2013

Dynamic Method Binding

Ability to use a derived class in a context that
expects its base class

Student s = new Student()

Person
printLabel() Professor p = new Professor()
/\ Person x =s;
Persony = p;
Student Professor .
printLabel() printLabel() s.printLabel();
p.printLabel();

x.printLabel(); // Which one?
y.printLabel();

Dynamic Method Binding

x.printLabel();

* |f we use Person’s printLabel() then this is using
static binding
— We say that Student’s printLabel() redefines Person’s
printLabel()
* If we use Student’s printLabel() this this is using
dynamic binding
— We say that Student’s printLabel() overrides Person’s
printLabel()
— This is what always happens in Java

* C++ and C# let you do both

2/10/2013

Virtual Methods

* Methods that can be overridden are called
virtual methods

— You might never have seen this term before since
it’s not used in Java because all methods are

virtual
* In C++: Normally virtual methods are used
when the object doesn’t know what
class person implementation is to be used at
{ compile time
public:

virtual void printLabel();

Abstract Classes

* In most OOP languages we can omit the body
of a virtual method in a base class

 Java and C# use the keyword abstract

— A class defined as abstract must have at least one
abstract method on it

abstract class person {
public abstract void printLabel();

. An interface is
* C++ uses assignmentto O identical to an
class person { abstract class with all
P . abstract methods
public:

virtual void printLabel() = 0;

2/10/2013

Dynamic Method Binding

* Non-virtual methods require no space at run
time; the compiler just calls the appropriate
version, based on type of variable

— Member functions are passed an extra, hidden,
initial parameter: this (called Me in VB and self in
Smalltalk)

* C++ philosophy is to avoid run-time overhead

whenever possible(Sort of the legacy from C)

— Languages like Smalltalk have (much) more run-
time support

Dynamic Method Binding

* Virtual functions are the only thing that
requires any trickiness

— They are implemented by creating a dispatch table
(vtable) for the class and putting a pointer to that
table in the data of the object

— Objects of a derived class have a different dispatch
table

* In the dispatch table, functions defined in the parent
come first, though some of the pointers point to
overridden versions

2/10/2013

Implementation of Virtual Methods

vtable = virtual method table

class foo {
int a; F foo’s vtable
double b; > X
char c; a
public:
virtual void k (... b

1
m ——> code form
n

virtual int 1 (...
virtual void m Q);
virtual double n(...

3) H

Implementation of virtual methods. The representation of object F begins
with the address of the vtable for class foo. (All objects of this class will point to the same
vtable.) The vtable itself consists of an array of addresses, one for the code of each virtual
method of the class. The remainder of F consists of the representations of its fields.

Implementation of Virtual Methods

class bar : public foo { B bar’s vtable
int w; X
public: 5 1
void m (); //override g .
X m ——code for bar’s m
virtual double s (... b .
. n —t—»code for foo's n
virtual char *t (... .
N | s —+—>»code for bar’s s
} B; v i

Implementation of single inheritance. The representation
of object B begins with the address of its s’s vtable. The first four entries in the table
represent the same members as they do for foo. except that one—m—has been overridden
and now contains the address of the code for a different subroutine. Additional fields of bar
follow the ones inherited from foo in the representation of B; additional virtual methods
follow the ones inherited from foo in the vtable of class bar.

class foo {
int a;
double b;
char c;

public:
virtual void k (...
virtual int 1 (...
virtual void m ()
virtual double n(...

}E;

class bar : public foo {
int w;
public:
void m (); //override
virtual double s (...

virtual char *t (...

Foo *f = new Foo();
Bar *b = new Bar();
Foo *q =b;

Bar *s =f;

2/10/2013

F foo’s vtable
> k
a 1
m ——> code form
P n
c
B bar’s viable
k
a 1
m ——»code for bar’s m
b n —1+—»code for foo's n
¢ s —+—>cade for bar’s s
w t

// static semantic error

Different on Stack:

Foo f;

Bar b;

Fooq=b;
Bars=f; //Error

Dynamic Type Binding

* Note that if you can query the type of an
object, then you need to be able to get from
the object to run-time type info

— The standard implementation technique is to put
a pointer to the type info at the beginning of the

vtable

— Of course you only have a vtable in C++ if your
class has virtual functions

