
2/10/2013

1

OOP and Dynamic Method
Binding

Chapter 9

Object Oriented Programming

• Skipping most of this chapter

• Focus on 9.4, Dynamic method binding

– Polymorphism or Subtype Polymorphism

• One of three key factors in OOP

– Encapsulation of data and methods (data hiding)

– Inheritance

– Dynamic method binding

2/10/2013

2

Dynamic Method Binding

• Ability to use a derived class in a context that
expects its base class

Person
printLabel()

Student
printLabel()

Professor
printLabel()

Student s = new Student()
Professor p = new Professor()

Person x = s;
Person y = p;

s.printLabel();
p.printLabel();

x.printLabel(); // Which one?
y.printLabel();

Dynamic Method Binding

• If we use Person’s printLabel() then this is using
static binding
– We say that Student’s printLabel() redefines Person’s

printLabel()

• If we use Student’s printLabel() this this is using
dynamic binding
– We say that Student’s printLabel() overrides Person’s

printLabel()
– This is what always happens in Java

• C++ and C# let you do both

x.printLabel();

2/10/2013

3

Virtual Methods

• Methods that can be overridden are called
virtual methods

– You might never have seen this term before since
it’s not used in Java because all methods are
virtual

• In C++:

class person
{

public:
virtual void printLabel();

Normally virtual methods are used
when the object doesn’t know what
implementation is to be used at
compile time

Abstract Classes

• In most OOP languages we can omit the body
of a virtual method in a base class

• Java and C# use the keyword abstract

– A class defined as abstract must have at least one
abstract method on it

• C++ uses assignment to 0

abstract class person {
public abstract void printLabel();

class person {
public:

virtual void printLabel() = 0;

An interface is
identical to an
abstract class with all
abstract methods

2/10/2013

4

Dynamic Method Binding

• Non-virtual methods require no space at run
time; the compiler just calls the appropriate
version, based on type of variable
– Member functions are passed an extra, hidden,

initial parameter: this (called Me in VB and self in
Smalltalk)

• C++ philosophy is to avoid run-time overhead
whenever possible(Sort of the legacy from C)
– Languages like Smalltalk have (much) more run-

time support

Dynamic Method Binding

• Virtual functions are the only thing that
requires any trickiness
– They are implemented by creating a dispatch table

(vtable) for the class and putting a pointer to that
table in the data of the object

– Objects of a derived class have a different dispatch
table
• In the dispatch table, functions defined in the parent

come first, though some of the pointers point to
overridden versions

2/10/2013

5

Implementation of Virtual Methods
vtable = virtual method table

Implementation of Virtual Methods

2/10/2013

6

Foo *f = new Foo();
Bar *b = new Bar();
Foo *q = b;
Bar *s = f; // static semantic error

Foo f;
Bar b;
Foo q = b;
Bar s = f; // Error

Different on Stack:

Dynamic Type Binding

• Note that if you can query the type of an
object, then you need to be able to get from
the object to run-time type info

– The standard implementation technique is to put
a pointer to the type info at the beginning of the
vtable

– Of course you only have a vtable in C++ if your
class has virtual functions

