
Instant C++ Programming

CS A331

This document assumes that you are familiar with Java and primarily highlights the

differences between the two languages.

First, here is the general format for a C++ program:

File: program.cpp

 /* Comments */

 // More comments

 #include <iostream>

 #include <string>

 … // Provides access to standard code libraries

 #include "myclass.h" // Provides access to user-defined code

 int g; // Global variables defined here

 using namespace std; // Defines the namespace we’re using

// Define any functions here that are available globally, e.g.

 void someFunc() {

 // code

 }

 int main(char *argv[], int argc) // Parameters optional

 {

 // Code here for main returning an int value

 }

If we would like to add classes, then each class is generally created in two files. The .h

file contains the header information, while the .cpp file contains the actual code. The

template would like the following for a class named “myclass”:

File: myclass.h

 #include … // Any includes up here

 class myclass

 {

 public:

 myclass(); // Default constructor

 ~myclass(); // Destructor

 void method(); // Define our methods here

 int method2(int i); // Defines the interface

 // to each method

 double d; // Define any public variables

 private:

 int x; // Define any private variables

 void method3(); // Define any private methods

 }; // Don’t forget the semicolon here

File: myclass.cpp:

 #include "myclass.h" // Any includes up here

 using namespace std;

 myclass::myclass() // class name followed by ::

 // followed by method name

 {

 // Code for constructor of this class

 }

 myclass::~myclass()

 {

 // Code for destructor,

// invoked when this class is destroyed

 }

 void myclass::method1()

 {

 // Code for method 1

 }

 int myclass::method2()

 {

 // code for method 2, returns an int

 }

 void myclass::method3()

 {

 // code for method 3

 }

myclass.cpp is called the implementation file and is compiled separately from the header

file, myclass.h. If myclass.h is going to be included in multiple implementation files, then

there is a problem redefining the class. Use the #ifndef directive to only define it once:

 #ifndef _MYCLASS_H

 #define _MYCLASS_H

#include … // Any includes up here

 class myclass

 {

 public:

 myclass(); // Default constructor

 ~myclass(); // Destructor

 void method(); // Define our methods here

 int method2(int i); // Defines the interface

 // to each method

 double d; // Define any public variables

 private:

 int x; // Define any private variables

 void method3(); // Define any private methods

 };

 #endif

If we would like to have a class be derived from another class (i.e. inherit the properties

of some superclass) we can denote this in the .h file when we define the class. For

example, the following defines a class called Auto that inherits from the class called

Vehicle:

 class Auto :: public Vehicle

 {

 // Definition of Auto class continues here

 }

Inheritance works very similarly to Java. A subclass inherits all public variables and

methods of the superclass. Private data, constructors, destructors, and operators are not

inherited. If a subclass has the same name as a method in the parent class, the method in

the subclass overrides the parent method. When a subclass is destroyed, upon

destruction the destructor of the superclass will be invoked.

In Java, you can use the super keyword to access the superclass method of an object in

the event that the subclass and superclass have the same method name. You can use the

name resolution operator to the same in C++. For example, say that both class Auto and

class Vehicle have a “GetID()” method.

The code:

 Auto a; // Note we don’t need a “new” unless we’re using pointers

 // Will allocate space for Auto on the stack as a local var

 a.GetID(); // Invokes GetID() from the Auto class

 a.Vehicle::GetID(); // Invokes GetID() from the Vehicle class

To compile C++ files in Unix, you can use the command:

 g++ file.cpp (or g++ *.c to compile everything)

This creates a file named “a.out” that you can then execute. In an IDE environment such

as Visual Studio you will need to create a new project, add the source files to it, and then

build it. We will give a demonstration in class.

C++ Basics

Now that we have seen the layout of a C++ program, let’s see some basic innards that

make up a typical C++ program.

Primitive Data Types: Just like Java.

 char, int, long, float, double, bool (not boolean)

 C++ treats 0 as false and non-zero as true

Strings: Not quite like Java.

C++ has no built-in data type that behaves like a Java string object. Instead, core C++

strings are defined as arrays of char. The null character \0 is used to terminate a string.

C++ does include a Standard Template Library (STL) implementation of a “string” data

type that behaves similarly to a Java string. (The STL library includes common data

structures, such as a vector, hash table, etc.)

To use the STL strings, we must #include <string> at the top of each file that wishes to

use strings. Here is an example:

 #include <string>

using namespace std;

 int main()

 {

 string s; // Note lowercase string, not String

 s = “hello”;

 s = “hello” + “there”; // Concatenation

 s.length(); // Returns # of chars in the string

 s[0]; // References character ‘h’

 s[1]; // References character ‘e’

 return 0;

 }

Output: To print data to the console, use:

 cout << data_to_print;

For example:

 cout << “hello world”; // Outputs hello world

 cout << s << “ “ << x+3; // Outputs string s concatenated with x+3

To print a newline at the end of the output use endl:

 cout << “hello world” << endl;

We can also include the various escape characters (\n, \r, \”, etc.) in the string.

Input: To read data from the keyboard, use cin. For example:

 int x;

 double d;

 cin >> x; // Reads an integer from the keyboard into x

 cout << x << endl; // Output what the user entered

 cin >> x >> d; // Input into multiple variables

If we are inputting into a string, this doesn’t quite behave as expected if there are spaces

in the input. cin only inputs data to the first whitespace, so if we have input with spaces

we don’t get the desired result:

 string s;

 cin >> s; // User types “hello world”

 cout << s << endl; // Outputs “hello”

 cin >> s; // Reads in the “world” part

 cout << s << endl; // Outputs “world”

To avoid this problem we can use various functions such as getline() to input a string to

the newline, but we won’t really deal with this issue in this short introduction to C++.

Boolean expressions, arithmetic operators, relational operators: Just like Java

If statement: Just like Java.

One exception is that any non-zero value is considered to be true, while zero is

considered to be false. So we could make a statement such as:

 if (1) { … } which amounts to : if (true) { … }

Assignment statement: Just like Java

One common pitfall is confusing = with ==. While Java will flag this as an error, C++

will not because it is considered legal. An example is below:

 int i=0;

 if (i=1) { … }

The body of the if statement will always be executed because in the expression “i=1” we

assign the value 1 into i, and the value tested by the if statement amounts to if (1) {…}

As we have seen this is considered true, so we will execute the boy of the statement and

at the same time variable i is set to 1.

For loop, while loop, do-while loop, break, continue: Just like Java

Defining methods: Call by value works just like Java. We must define the method

prototype in the .h file and then place the actual code for the method in the .cpp

implementation file.

One difference is that C++ allows us to optionally pass a parameter by reference. In this

mode, the address of the variable is passed to the method instead of putting a copy of the

value on the stack. By having the address of the source variable, changes to the variable

in the method result in changes to the variable in the caller. To declare a parameter as

reference, put an & in front of the variable name in the method prototype. For example:

void ChangeValues(int &y)

{

 y = 20;

 return;

}

int main()

{

 int x = 3;

 ChangeValues(x);

 cout << x << endl; // Outputs 20

 return 0;

}

If ChangeValues was defined as void ChangeValues(int y) then we get the Call by

Value behavior and x retains the value 3 inside main.

Scoping: Same as Java. Variables defined in methods have local scope in that method

only. Variables defined outside everything have global scope. Variables defined as

members of a class have are accessible from any method within the class. We can also

define variables as static, just like Java.

However, we can use static variables inside a method and they behave like global

variables:

void foo()

{

 static int x = 0;

 x++;

 cout << x << endl;

}

If foo is called twice, on the second time, x is set to 2.

At this point it may be helpful to see a small example program. Here is a class that stores

fractions and performs some small manipulations on them:

File: fraction.h

 class Fraction {

 public:

 Fraction();

 void Set(int num, int denom);

 void Print();

 void Get(int &num, int &denom);

 private:

 int m_numerator, m_denominator;

 }; // Don’t forget the ;

File: fraction.cpp

 #include <iostream>

 #include “fraction.h”

 using namespace std;

Fraction::Fraction() {

 // Initial values

 m_numerator=0;

 m_denominator=1;

}

void Fraction::Set(int num, int denom) {

 m_numerator = num;

 m_denominator = denom;

}

void Fraction::Print() {

 cout << m_numerator << “/“ << m_denominator << endl;

}

void Fraction::Get(int &num, int &denom) {

 num = m_numerator;

 denom = m_denominator;

}

File main.cpp

 #include <iostream>

 #include "fraction.h"

 using namespace std;

 int main()

 {

 Fraction f1; // Constructor invoked upon creation

 int a=0,b=0;

 f1.Print(); // Outputs 0/1

 f1.Set(1,2);

 f1.Print(); // Outputs 1/2

 f1.Get(a,b);

 cout << a << " " << b << endl; // Outputs 1 2

 return 0;

 }

C++ lets us use the keyword const to make things constant and unchangeable, but it can

be used in many different ways that can be confusing.

 const int x = 3; and

 int const x = 3;

both make x a constant that is an integer set to 3. You can’t change x. In general, the

thing to the left is what the const applies to, unless there is nothing there, in which case

the const applies to the thing to the right.

Const can also be used for a return type. Consider this:

int& foo()

{

 static int x = 0;

 return x;

}

main:

 cout << foo()++ << endl;

 cout << foo() << endl;

This outputs 0 and then 1, because the ++ changes the return value which references the

static variable. If you want to return a reference for efficiency purposes but don’t want it

changeable then you can make it const:

const int& foo()

Const can also be used with parameter passing. You might want to pass something by

reference to save memory, but really don’t want the parameter to be changed. In this case

you can make it const:

 void foo(const big_class ¶meter)

Finally, const can be used in OOP to specify that a function can’t change any instance

(member) variables in the object. To do this stick const at the end of the function in the

header and implementation file:

class Fraction {

 public:

 void Print() const;

…

void Fraction::Print() const

{

 cout << m_numerator << “/“ << m_denominator << endl;

}

You can combine these to be extra confusing:

 const int& myfunction(const MyClass& parm) const

One nice thing that C++ allows that is not allowed in Java is we can overload operators.

For example, let’s say we would like to define the *= operator so it multiplies the first

fraction by the second fraction, i.e. consider the following:

 int main()

 {

 Fraction f1,f2;

 f1.Set(1,2);

 f2.Set(3,4);

 f1*=f2; // f1 = 1/2*3/4 = 3/8

 f1.Print(); // Outputs 3/8

 return 0;

 }

We can accomplish by adding the following as a public method of fraction.h :

Fraction& operator*=(const Fraction &rtSide);

Then in fraction.cpp we add:

Fraction& Fraction::operator*=(const Fraction &rtSide)

{

 m_numerator *= rtSide.m_numerator;

 m_denominator *= rtSide.m_denominator;

 return *this;

}

This produces the desired result. The most typical use of overloaded operators is to

overload the assignment operator, =, to perform more complicated tasks when we are

setting two objects equal to one another (e.g., we might want to copy various data

variables from the source to the target).

Arrays: Arrays are used much like in Java, but are defined a bit differently. The format

for defining an array in C++ is:

 type varname[SIZE];

If defined as a local variable, this will allocate enough space on the stack to store the

entire array (i.e. SIZE*sizeof(type)). varname then holds the address of the first element

in the array. Note that this is different from Java, which requires us to use the new

operator which allocates the array data from the heap.

Accessing the contents of an array is just like in Java, e.g. varname[0] accesses the

element at position 0, up to varname[SIZE-1].

Multi-dimensional arrays can be created by adding more brackets. For example, the

following creates a 3-d array:

 int three_d_array[10][10][10];

Passing an array as a parameter to a method requires some new syntax. To define an

array parameter, use the definition of the array without any size, e.g.:

void someFunction(int arr[])

{

 arr[0]=4;

}

This would be invoked as:

 int arr[100];

 someFunction(arr);

Arrays behave as they are passed by reference, so upon return arr[0] will equal 4 in the

caller’s scope. Note that inside the method we lose the notion of how large the array is,

so we must either know as the programmer or we should pass in another parameter that is

the size of the array.

If you pass multidimensional arrays to a function you have to specify the size of

everything but the topmost dimension; e.g. void someFunction(int arr[][100]);

If we define arrays as shown here, then the array is allocated on the stack. We can also

declare a dynamic array which allocates the array from the heap (shown later).

Pointers

Manipulation of pointers is where C++ strays from Java. When we covered how variables

are passed by reference, we alluded to the notion of pointers – the memory address where

data is stored is actually passed along, resulting in a change to the original data. There is

a method in C++ to explicitly get the address of an identifier. The addresses are called

pointers and pointers are one of the primitive data types.

To declare something to be a pointer, use a * in the definition of the variable.

For example, the following defines a variable to be a pointer to a long:

 long lngVal=0, *lngPtr;

This declares two variables. One (lngVal) is a normal variable with enough space

allocated to it to hold a long, initialized in this case to zero. The other (lngPtr) is a

variable with enough space allocated to it to hold a memory address. It is intended that

this memory address be that of a long somewhere in memory, although since pointers to

different types could be mixed since all pointers are the same size, regardless of what

they point to..

It is common to initialize pointers to NULL. This stores the value 0 into a pointer and

can be used to test if a pointer has been set or not:

 long *lngPtr = NULL;

Pointer Operators

The & or address operator returns the address of its operand. To use it, precede an

identifier by & to retrieve its address. (This is different from the & used in passing

variables by reference!) For example:

long lngVal=0, *lngPtr;

cout << &lngVal << endl;

This will print out the address of the variable lngVal.

We can assign a memory address to a pointer variable. To assign the address of lngVal to

lngPtr we use the assignment operator:

 lngPtr = &lngVal;

This copies the address of lngVal into the contents of lngPtr:

Often this is depicted graphically:

What happens if we print the value of lngPtr? Let’s look at two properties of lngPtr:

 cout << lngPtr << endl;

 cout << &lngPtr << endl;

lngVal 00000000

lngPtr

The first statement prints out the contents of lngPtr. This would output the memory

address of lngVal, which will appear as some hex number. The second statement prints

out the address of lngPtr. Yes, we can get the address of a pointer just like any other

variable! .

If we want to access the value being referenced by the pointer, then we must use the * or

indirection / dereferencing operator. To use it, add the operator in front of the pointer

to dereference:

 cout << *lngPtr << endl;

This will output 0. The dereference operator follows the pointer and references the value

being pointed at. In other words, this operator fetches the memory address stored in the

pointer. Then it goes to that memory address and fetches the data stored at that address.

Sample exercise: What is the output of the following code?

 int x, *xPtr=NULL, y, *yPtr=NULL;

 x=10;

 y=20;

 xPtr = &x;

 yPtr = &y;

 cout << x << *xPtr << y << *yPtr << endl;

 yPtr = xPtr;

 cout << *yPtr << endl;

 cout << xPtr << &x << endl;

The first cout statement will print the values of x and y:

10 10 20 20

The second cout statement will print 10 because yPtr is changed to the address of x:

 10

The last statement will print the address of x, which will vary when run:

 1045123 1045123

What is the output of the following?

int x, *xPtr=NULL, y, *yPtr=NULL;

x=10;

xPtr = &x;

*xPtr = 20;

cout << x << *xPtr << endl;

By setting xPtr to the address of x, and then changing it by dereference, the contents of x

are changed and the output is 20:

 20 20

What is wrong with the following?

 int x, *xPtr=NULL, y, *yPtr=NULL;

 x = 10;

*xPtr = 20;

cout << x << *xPtr << endl;

In this case, we are trying to store the value 20 into memory address NULL (0). This is

not allowed and will likely cause the program to crash. We should only dereference a

pointer after it is pointing to some allocated memory. In this case, the pointer is not

pointing to any allocated memory. We can point to allocated memory by setting a

pointer to another variable using the & operator. We can also use the new operator

described next to allocate memory for us.

The above is a very common bug, so watch out and make sure that your pointers hold

valid references!

Dynamic Variables

In the previous discussion, we created a variable and stored its address in a pointer

variable. By now, you should be asking, but why? Why would you go to this much

trouble if it is only an alternative way to do something you can already do? The ability

to store and manipulate the addresses of variables allows us to create dynamic variables

allocated from the heap.

Dynamic variables are created and destroyed as needed by the program itself. new is an

operator that allocates a dynamic variable; delete is an operator that deallocates it. The

format is :

 ptrVar = new <type>

 delete ptrVar;

Here is a code sample:

char* charPtr=NULL;

MyClass* classPtr=NULL;

char* aCString=NULL;

charPtr = new char; // Allocate a character

classPtr = new MyClass(); // Allocate a class (similar

to Java)

aCString = new char[10]; // Allocate 10 characters

*charPtr = 'A’;

// Suppose MyClass has “intMemberVar”

(*classPtr).intMemberVar = 55;

strcpy(aCString, "foo");

cout << aCString ;

cout << " " << *charPtr << "." ;

cout << (*classPtr.intMemberVar) << endl;

delete charPtr; // Deletes necessary to avoid garbage

delete intMemberVar;

delete[] aCString; // use [] to indicate deleting an array

This code segment produces the output:

 foo A 55

In this example, the variables created by new to hold the data exist only from the

execution of new to the execution of delete. The data is allocated from a large block of

free memory called the heap. The locations that were allocated for them can now be

allocated for some other variables. Here, we are talking about three variables, so space is

not important. However, when you graduate to writing very large programs, this

technique of using space only during the time that you need it becomes important.

The variables generated by new are called dynamic variables because they are created at

run time. Dynamic variables are used just like any other variables of the same type, but

pointer variables should only be assigned to one another, tested for equality, and

dereferenced.

Important:

 Never try to store data into a pointer that does not have space allocated for it.

int *xPtr;

*xPtr = 10;  NO! Memory has not been allocated for the data

 Never delete a pointer that was not allocated with new. If the pointer was

assigned to an auto variable, there is no need to delete it.

int *xPtr, x=5;

xPtr = &x;

delete xPtr;  NO!

 Always delete a pointer that is allocated with new when you are finished! If you

do not explicitly delete the memory, it will create garbage and waste memory.

int *xPtr;

xPtr = new int;

*xPtr = 5;

xPtr = NULL;  Lose handle to allocated memory!

In this case we changed xPtr, it is no longer pointing to the allocated memory! By

changing the pointer, we lost the “handle” to the allocated memory.

Pointer Arithmetic

A limited set of arithmetic can be performed on pointers. For example, we can add a

value to a pointer. But what does it mean to increment a pointer? The answer is that the

pointer is changed by an amount equal to the size of the type that the pointer is

referencing.

For example, let’s say that we declare an array of integers:

 int arr[5]={0};

 int *intPtr;

 intPtr = &arr[0]; (equivalent to intPtr = arr);

The allocation in memory looks something like this:

In this picture, intPtr is pointing to the beginning of the array, or it contains address 1000

(hex).

What happens if we do intPtr = intPtr + 1?

In normal arithmetic, we would get 1000 +1 or 1001. However, this is not the case with

pointer arithmetic. Instead, the pointer is changed by the integer times the size of the

object to which the pointer refers. In this case, each integer is 4 bytes. So by adding one

to intPtr, we are actually adding 4, to hold 1004 and point to the next element in the

array. If we execute the following:

 intPtr = intPtr +1;

 *intPtr = 5;

arr

intPtr

0

1000 1004 1008 100C 1010

0 0 0 0

addr

The picture is changed to:

If we were to print out arr[1] then we would be outputting the value 5!

Similarly, if we now set:

 intPtr +=2;

The pointer is changed to move down two elements, referencing 100C:

Exercise: What does the following code do?

 char s[6]=”krunk”; // Stores \0 at the end into s[5]

 char *ptr1,*ptr2, c;

 ptr1=&s[0];

 ptr2=&s[4];

 while (ptr1<ptr2) {

 c=*ptr1;

 *ptr1=*ptr2;

 *ptr2=c;

 ptr1++;

 ptr2--;

 }

 cout << s << endl;

arr

intPtr

0

1000 1004 1008 100C 1010

5 0 0 0

addr

arr

intPtr

0

1000 1004 1008 100C 1010

5 0 0 0

addr

Arrays and Pointers

Arrays and pointers are intimately related in C++. They may be used almost

interchangeably. An array name is basically a constant pointer; it cannot be changed.

Consider the following pointer and array:

 int arr[10], *intPtr=NULL;

 intPtr = &arr[0];

The above is equivalent to:

 intPtr = arr;

Array element arr[3] could also be referenced as:

 *(intPtr + 3)

The number three above is the offset into the pointer. Since pointer arithmetic will add

the proper amount based on the size of each element, we’ll be guaranteed to get the

fourth value (i.e. the value in arr[3]).

If we wanted the address of arr[3] we could use:

 &arr[3]

this is equivalent to:

 (intPtr + 3);

So we can use a pointer to access data within an array by just adding in the proper offset.

We can also treat an array like a pointer!

 &(arr + 3)

Returns the same thing as (intPtr + 3), because intPtr and arr are just both pointers to the

beginning of the array.

We can even treat pointers like they are arrays:

 intPtr[3] will access the same element as arr[3]

To recap, we can apply almost all pointer operations to arrays, and vice versa:

 int arr[10], intPtr=NULL;

 intPtr = &arr[0];

 *(intPtr + 3) == arr[3];

 *(arr + 3) == intPtr[3];

 (intPtr + 3) == &arr[3];

 (arr + 3) == &intPtr[3];

One place where arrays are NOT like pointers is that you cannot change an array. Arrays

are like constant pointers:

 intPtr = intPtr + 1; // VALID, intPtr now points to arr[1]

 arr = arr + 1; // INVALID, can’t change an array!

Structures and Pointers to Structures (Linked Lists)

As we have seen from the programming languages textbook, structures and classes allow

us to group together disparate data types into a single object. In this section we will look

at the struct although everything we cover here also applies to a class (which you should

hopefully be familiar with from learning Java).

To define a struct, use the keyword struct followed by the name of the structure. Then

use curly braces followed by variable types and names:

 struct StructName

 {

 type1 var1;

 type2 var 2;

 …

 type3 var N;

 };

Note the need for a semicolon at the end of the right curly brace!

The above defines a structure named “StructName”. You can use StructName like it is a

new data type. For example, the following will declare a variable to be of type

“StructName”:

 StructName myVar;

To access the members (variables) within the structure, use the variable name followed

by a dot and then the variable within the struct. This is called the member selector:

 myVar.var1;

Here is an example structure:

struct Recording

{

 string title; // STL string

 string artist;

 float cost;

 int quantity;

};

Recording song; // Declaration of variable

The only aggregate operation defined on structures is assignment, but structures may be

passed as parameters and they may be the return value type of a function. Assignment

copies each member variable from the source to the destination struct. For example, the

following is valid:

 Recording song1,song2;

 song1.title = “YMCA”;

 song1.artist = “Village People”;

 song1.cost = 10.50;

 song1.quantity = 2;

 song2 = song1;

 cout << song2.title << endl;

This will print out “YMCA” as the contents of song1 get copied to song2. However, the

default for assignment is to only copy one level deep, not a deep copy. For example, if

one of the member variables referenced a linked list, we don’t get a whole new copy of

the linked list, we instead get a reference to the original linked list.

We can do other things like make an array of structs:

 Recording songs[100];

 songs[0].title = “YMCA”;

 songs[0].artist = “Village People”;

 … etc...

Linked Structures

Dynamic variables combined with structures can be linked together to form dynamic

lists. We define a structure (called a node) that has at least two members: next (a pointer

to the next node in the list) and component (the type of the items on the list). For

example, let's assume that our list is a list of integers.

struct NodeType

{

 int num; // Some numeric value for this node

 NodeType *next; // Pointer to a NodeType

};

NodeType *headPtr; // Pointer to the first thing in the list

NodeType *newNodePtr; // extra pointer

To form dynamic lists, we link variables of NodeType together to form a chain using the

next member. We get the first dynamic list node and save its address in the variable

headPtr. This pointer is to the first node in the list. We then get another node and have it

accessible via newNodePtr:

headPtr = new NodeType;

newNodePtr = new NodeType;

Next, let’s store some data into the node pointers. To access the structure, we have to

first de-reference the pointer (using *) and then we need to use the dot notation to access

the member of the structure:

 (*headPtr).num = 51;

 (*headPtr).next = NULL;

Instead of using the * and the . separately, C++ supports a special operator to do both

simultaneously. This operator is the arrow: -> and it is identical to dereferencing a

pointer and then accessing a structure:

 newNodePtr->num = 55;

 newNodePtr->next = NULL;

is identical to

 (*newNodePtr).num = 55;

 (*newNodePtr).next = NULL;

Right now we have two separate NodeTypes. We can link them together to form a linked

list by having the next field of one pointing the address of the next node:

headPtr->next = newNodePtr;

We now have a picture that looks like:

We just built a linked list consisting of two elements! The end of the list is signified by

the next field holding NULL.

We can get a third node and store its address in the next member of the second node.

This process continues until the list is complete. The following code fragment reads and

stores integer numbers into a list until the input is –1:

struct NodeType

{

 int num;

 NodeType *next;

};

int main()

{

 NodeType *headPtr, *newNodePtr, *tailPtr, *tempPtr;

 int temp;

 headPtr = new NodeType;

 headPtr->next = NULL;

 tailPtr = headPtr; // Points to the end of the list

 cout << "Enter value for first node" << endl;

 cin >> headPtr->num; // Require at least one value

 cout << "Enter values for remaining nodes, with -1 to stop." << endl;

 cin >> temp;

 while (temp!=-1) {

 // First fill in the new node

 newNodePtr = new NodeType;

 newNodePtr->num = temp;

 newNodePtr->next = NULL;

 // Now link it to the end of the list

 tailPtr->next=newNodePtr;

 // Set tail to the new tail

 tailPtr = newNodePtr;

 // Get next value

 cin >> temp;

 }

headPtr
num: 51

next:
newNodePtr

num: 55

next:NULL

This program (it is incomplete, we’ll finish it below) first allocates memory for headPtr

and inputs a value into it. It then sets tailPtr equal to headPtr. tailPtr will be used to

track the end of the list while headPtr will be used to track the beginning of the list. For

example, let’s say that initially we enter the value 10:

Upon entering the loop, let’s say that we enter 50 which is stored into temp. First we

create a new node, pointed to by newNodePtr, and store data into it:

Then we link tailPtr->next to newNodePtr:

Finally we update tailPtr to point to newNodePtr since this has become the new end of

the list:

Let’s say that the next number we enter is 23. We will repeat the process, first allocated a

new node pointed to by newNodePtr, and filling in its values:

headPtr

num: 10

next: NULL

tailPtr

headPtr

num: 10

next: NULL

tailPtr

num: 50

next: NULL

newNodePtr

headPtr

num: 10

next:

tailPtr

num: 50

next: NULL

newNodePtr

headPtr

num: 10

next:

tailPtr

num: 50

next: NULL

newNodePtr

Then we link tailPtr to newNodePtr:

Finally we update tailPtr to point to the new end of the list, newNodePtr:

The process shown above continues until the user enters –1. Note that this allows us to

enter an arbitrary number of elements, up until we run out of memory! This overcomes

limitations with arrays where we need to pre-allocate a certain amount of memory (that

may turn out later to be too small).

Lists of dynamic variables are traversed (nodes accessed one by one) by beginning with

the first node and accessing each node until the next member of a node is NULL. The

following code fragment prints out the values in the list.

 cout << “Printing out the list” << endl;

 tempPtr = headPtr;

 while (tempPtr!=NULL) {

 cout << tempPtr->num << endl;

 tempPtr=tempPtr->next;

 }

tempPtr is initialized to headPtr, the first node. If tempPtr is NULL, the list is empty and

the loop is not entered. If there is at least one node in the list, we enter the loop, print the

member component of tempPtr, and update tempPtr to point to the next node in the list.

tempPtr is NULL when the last number has been printed, and we exit the loop.

headPtr

num: 10

next:

tailPtr

num: 50

next: NULL

newNodePtr

num: 23

next: NULL

headPtr

num: 10

next:

tailPtr

num: 50

next:

newNodePtr

num: 23

next: NULL

headPtr

num: 10

next:

tailPtr

num: 50

next:

newNodePtr

num: 23

next: NULL

Once we have printed out the data, we’re not done! Before we exit the program, we

should make certain to free up the memory we allocated to prevent memory leaks. We

can do so in a loop similar to the one we used to print out the list:

// Now free the dynamically allocated memory to prevent memory leaks

 while (headPtr!=NULL) {

 tempPtr=headPtr;

 headPtr=headPtr->next;

 delete tempPtr;

 }

} // End program (piecing together all of the above)

This loop goes through and frees each node until we reach the end.

Note that we used two pointers above, tempPtr and headPtr. What is wrong with the

following?

 while (headPtr!=NULL) {

 delete headPtr;

 headPtr=headPtr->next;

 }

Because the types of a list node can be any data type, we can create an infinite variety of

lists. Pointers also can be used to create very complex data structures such as stacks,

queues, and trees that are the subject of more advanced computer science courses.

Using Classes as Dynamic Data Structures

The previous code would work identically if we replace the struct with a class:

struct NodeType

{

 int num;

 NodeType *next;

};

 to

class NodeType

{

 public:

 int num;

 NodeType *next;

 private:

};

We don’t have to change anything else to the code. If we use a class instead of a struct

though, we have the option of using all of the niceties of classes (inheritance, define

methods, overloading, overriding, hiding data with private, etc.) You can actually do

many of these things with structs as well, but normally a struct is only used to store data.

Other Things

There are many other aspects of C++ that are different than Java, but in our limited time

we must stop here. A short list of some of the differences from the C++ perspective are

listed below:

 Multiple inheritance

 Standard Template Library

 Goto

 Function Pointers

 Nested Classes

 Lack of built-in multithreading support

 Preprocessing directives

