
More C++

The Standard Template Library
The Standard Template Library (STL) includes generic libraries for such data structures as stacks, queues,

etc. Here we give a brief introduction through some examples. The STL classes are often referred to as

container classes. Although the STL is not part of the core C++ language, it is part of the C++ standard,

and so any implementation of C++ that conforms to the standard includes the STL. As a practical matter,

you can consider the STL to be part of the C++ language.

The STL uses iterators to access items in a container class. An iterator is not a pointer, but you will not

go far wrong if you think of it and use it as if it were a pointer. Like a pointer variable, an iterator

variable is located at (points to) one data entry in the container. You manipulate iterators using the

following overloaded operators that apply to iterator objects:

 Prefix and postfix increment operators (++) for advancing the iterator to the next data item.

 Prefix and postfix decrement operators (--) for moving the iterator to the previous data item.

 Equal and unequal operators (== and !=) to test whether two iterators point to the same data

location.

 A dereferencing operator (*) so that if p is an iterator variable, then *p gives access to the data

located at (pointed to by) p. This access may be read only, write only, or allow both reading and

changing of the data, depending on the particular container class.

A container class has member functions that get the iterator process started.

 c.begin() returns an iterator for the container c that points to the “first” data item in the

container c.

 c.end() returns something that can be used to test when an iterator has passed beyond the last

data item in a container c. The iterator c.end() is completely analogous to NULL .The iterator

c.end() is thus an iterator that is not located at a data item but that is a kind of end marker or

sentinel.

Here is a program to demonstrate the vector class, which is like an arraylist in Java.

#include <iostream>

#include <vector>

using namespace std;

int main()

{

 vector<int> container;

 for (int i = 1; i <= 4; i++)

 container.push_back(i);

 cout << "Here is what is in the container:\n";

 vector<int>::iterator p;

 for (p = container.begin(); p != container.end(); p++)

 cout << *p << " ";

 cout << endl;

 cout << "Here is what is in the container:\n";

 for (int i = 0; i < container.size(); i++)

 cout << container[i] << " ";

 cout << endl;

 cout << "Setting entries to 0:\n";

 for (p = container.begin(); p != container.end(); p++)

 *p = 0;

 cout << "Container now contains:\n";

 for (p = container.begin(); p != container.end(); p++)

 cout << *p << " ";

 cout << endl;

 return 0;

}

There is also a list STL class, but the vector does essentially the same things as the list.

There is also a Stack class:

//Program to demonstrate use of the stack template class from the STL.

#include <iostream>

#include <stack>

using std::cin;

using std::cout;

using std::endl;

using std::stack;

int main()

{

 stack<char> s;

 cout << "Enter a line of text:\n";

 char next;

 cin.get(next);

 while (next != '\n')

 {

 s.push(next);

 cin.get(next);

 }

 cout << "Written backward that is:\n";

 while (! s.empty())

 {

 cout << s.top();

 s.pop();

 }

 cout << endl;

 return 0;

}

The STL includes classes for sets and maps. The map class is like an associate array where we can

associate items of any data type to items of any other data type. Here is an example where we map

from stringstring:

//Program to demonstrate use of the map template class.

#include <iostream>

#include <map>

#include <string>

using std::cout;

using std::endl;

using std::map;

using std::string;

int main()

{

 map<string, string> planets;

 planets["Mercury"] = "Hot planet";

 planets["Venus"] = "Atmosphere of sulfuric acid";

 planets["Earth"] = "Home";

 planets["Mars"] = "The Red Planet";

 planets["Jupiter"] = "Largest planet in our solar system";

 planets["Saturn"] = "Has rings";

 planets["Uranus"] = "Tilts on its side";

 planets["Neptune"] = "1500 mile per hour winds";

 planets["Pluto"] = "Dwarf planet";

 cout << "Entry for Mercury - " << planets["Mercury"]

 << endl << endl;

 if (planets.find("Mercury") != planets.end())

 cout << "Mercury is in the map." << endl;

 if (planets.find("Ceres") == planets.end())

 cout << "Ceres is not in the map." << endl << endl;

 // Iterator outputs planets in order sorted by key

 cout << "Iterating through all planets: " << endl;

 map<string, string>::const_iterator iter;

 for (iter = planets.begin(); iter != planets.end(); iter++)

 {

 cout << iter->first << " - " << iter->second << endl;

 }

 return 0;

}

PITFALL: Underlying Containers

If you specify an underlying container, be warned that you should not place two > symbols in the type

expression without a space in between them, or the compiler can be confused.

Use map<int, vector<int> >, with a space between the last two >’s.

Do not use map<int, vector<int>>.

Overloading the Assignment Operator
Here is an example illustrating a shallow copy when we use assignment on objects without an

assignment operator.

class Overload

{

 public:

 Overload();

 Overload(int num1, int num2);

 ~Overload();

 void print();

 int num1, *num2;

};

#include <iostream>

#include "overload.h"

using namespace std;

Overload::Overload()

{

 num1 = 0;

 num2 = new int;

 *num2 = 0;

}

Overload::Overload(int num1, int num2)

{

 this->num1 = num1;

 this->num2 = new int;

 *(this->num2) = num2;

}

Overload::~Overload()

{

 delete num2;

}

void Overload::print()

{

 cout << num1 << " " << *num2 << endl;

}

int main()

{

 Overload o1, o2(3,4);

 o1.print();

 o2.print();

 o1 = o2;

 *o1.num2 = 100;

 o1.print();

 o2.print();

 return 0;

}

This implementation has a couple of problems – it does a shallow copy of the pointer (o2.print outputs

100) and we end up deleting num2 twice in the destructor.

One way to avoid this problem is to perform a deep copy in the assignment operator. We can overload

the assignment operator as follows:

Add to the .h file:

Overload& operator=(const Overload &rtSide);

Add to the .cpp file:

Overload& Overload::operator=(const Overload &rtSide)

{

 if (this == &rtSide)

 //if the right side is the same as the left side

 {

 return *this;

 }

 else

 {

 // Copy values, following the pointer

 num1 = rtSide.num1;

 *num2 = *rtSide.num2;

 return *this;

 /* Alternate version would deallocate/allocate

 * if we had a linked data structure

 num1 = rtSide.num1;

 delete num2;

 num2 = new int;

 *num2 = *rtSide.num2;

 return *this;

 */

 }

}

This new version makes a proper copy of the object when assigned and avoids the double delete

problem.

Finally, here is an example program that uses Posix threads. This is a C library that allows us to run code

in separate threads, possibly in parallel.

/* Need to compile and link with -pthread */

#include <iostream>

#include <pthread.h>

using namespace std;

// This structure passes data to and from the thread

typedef struct argdata

{

 int num1, num2;

 int return_val;

};

// Code to run in a thread

void *TaskCode(void *argument)

{

 argdata *p;

 p = (argdata *) argument;

 int n1, n2;

 n1 = p->num1;

 n2 = p->num2;

 p->return_val = (n1 + n2); // Time intensive computation

 return NULL;

}

int main ()

{

 pthread_t thread1,thread2;

 argdata arg1, arg2;

 /* create two threads */

 arg1.num1 = 1;

 arg1.num2 = 2;

 arg2.num1 = 3;

 arg2.num2 = 4;

 pthread_create(&thread1, NULL, TaskCode, (void *) &arg1);

 pthread_create(&thread2, NULL, TaskCode, (void *) &arg2);

 /* wait for all threads to complete */

 pthread_join(thread1, NULL);

 pthread_join(thread2, NULL);

 cout << "Done! Return values: " << arg1.return_val << " "

 << arg2.return_val << endl;

 return 0;

}

Compiling on bigmazzy: g++ pthread.cpp –pthread

