
1

Functional Programming in

Scheme

CS331

Chapter 10

Functional Programming

• Online textbook: http://www.htdp.org/

• Original functional language is LISP

– LISt Processing

– The list is the fundamental data structure

– Developed by John McCarthy in the 60’s

• Used for symbolic data processing

• Example apps: symbolic calculations in integral and differential

calculus, circuit design, logic, game playing, AI

• As we will see the syntax for the language is extremely simple

– Scheme

• Descendant of LISP

2

Functional Languages

• “Pure” functional language
– Computation viewed as a mathematical function mapping inputs to

outputs

– No notion of state, so no need for assignment statements (side effects)

– Iteration accomplished through recursion

• In practicality
– LISP, Scheme, other functional languages also support iteration,

assignment, etc.

– We will cover some of these “impure” elements but emphasize the
functional portion

• Equivalence
– Functional languages equivalent to imperative

• Core subset of C can be implemented fairly straightforwardly in Scheme

• Scheme itself implemented in C

• Church-Turing Thesis

Lambda Calculus

• Foundation of functional programming

• Developed by Alonzo Church, 1941

• A lambda expression defines
– Function parameters

– Body

• Does NOT define a name; lambda is the nameless
function. Below x defines a parameter for the
unnamed function:

)(xxx

3

Lambda Calculus

• Given a lambda expression

4)2)((xxx

• Application of lambda expression

• Identity

• Constant 2:

)(xxx

)(xx

)2(x

Lambda Calculus

• Any identifier is a lambda expression

• If M and N are lambda expressions, then the

application of M to N, (MN) is a lambda

expression

• An abstraction, written where x is

an identifier and M is a lambda expression,

is also a lambda expression

)(Mx

4

Lambda Calculus

essionLambdaExprN

essionLambdaExprM

MidentMNidentessionLambdaExpr

)(|)(|

)))(((

)(

yyxx

xx

x

 Examples

Lambda Calculus
First Class Citizens

• Functions are first class citizens

– Can be returned as a value

– Can be passed as an argument

– Can be put into a data structure as a value

– Can be the value of an expression

4)22())2)(((xyxxx

((λx·(λy·x+y)) 2 1) = ((λy·2+y) 1) = 3

5

Lambda Calculus

Functional programming is essentially an
applied lambda calculus with built in

 - constant values

 - functions

E.g. in Scheme, we have (* x x) for x*x
instead of λx·x*x

Functional Languages

• Two ways to evaluate expressions

• Eager Evaluation or Call by Value

– Evaluate all expressions ahead of time

– Irrespective of if it is needed or not

– May cause some runtime errors

• Example

(foo 1 (/ 1 x)) Problem; divide by 0

6

Lambda Calculus

• Lazy Evaluation
– Evaluate all expressions only if needed

(foo 1 (/ 1 x)) ; (/ 1 x) not needed, so never eval’d

– Some evaluations may be duplicated

– Equivalent to call-by-name

– Allows some types of computations not possible in eager
evaluation

• Example
– Infinite lists

• E.g,. Infinite stream of 1’s, integers, even numbers, etc.

– Replaces tail recursion with lazy evaluation call

– Possible in Scheme using (force/delay)

Running Scheme for Class

• A version of Scheme called Racket

(formerly PLT/Dr Scheme) is available on

the Windows machines in the CS Lab

• Download: http://racket-lang.org/

• Unix, Mac versions also available if desired

7

Racket

• You can type code directly into the

interpreter and Scheme will return with the

results:

8

Make sure right Language is selected

I like to use the

“Pretty Big”

language choice

Racket – Loading Code

• You can open code saved in a file. Racket uses the

extension “.rkt” so consider the following file “factorial.rkt”

created with a text editor or saved from Racket:

(define factorial

 (lambda (n)

 (cond

 ((= n 1) 1)

 (else (* n (factorial (- n 1))))

)

)

)

1: Open

2: Run

3: Invoke functions

9

Functional Programming

Overview
• Pure functional programming

– No implicit notion of state

– No need for assignment statement
• No side effect

– Looping
• No state variable

• Use Recursion

• Most functional programming languages have side
effects, including Scheme

– Assignments

– Input/Output

Scheme Programming Overview

- Refreshingly simple

- Syntax is learned in about 10 seconds

- Surprisingly powerful

- Recursion

- Functions as first class objects (can be value of an expression,

passed as an argument, put in a data structure)

- Implicit storage management (garbage collection)

- Lexical scoping

- Earlier LISPs did not do that (dynamic)

- Interpreter

- Compiled versions available too

10

Expressions

• Syntax - Cambridge Prefix

– Parenthesized

– (* 3 4)

– (* (+ 2 3) 5)

– (f 3 4)

• In general:

– (functionName arg1 arg2 …)

• Everything is an expression

– Sometimes called s-expr (symbolic expr)

Expression Evaluation

• Replace symbols with their bindings

• Constants evaluate to themselves

– 2, 44, #f

– No nil in Racket; use ‘()

• Nil = empty list, but Racket does have empty

• Lists are evaluated as function calls written

in Cambridge Prefix notation

 (+ 2 3)

 (* (+ 2 3) 5)

11

Scheme Basics

• Atom

– Anything that can’t be decomposed further

• a string of characters beginning with a letter,
number or special character other than (or)

• e.g. 2, #t, #f, “hello”, foo, bar

• #t = true

• #f = false

• List

– A list of atoms or expressions enclosed in ()

– (), empty,(1 2 3), (x (2 3)), (()()())

Scheme Basics

• S-expressions

– Atom or list

• () or empty

– Both atom and a list

• Length of a list

– Number at the top level

12

Quote

• If we want to represent the literal list (a b c)

– Scheme will interpret this as apply the

arguments b and c to function a

• To represent the literal list use “quote”

– (quote x) x

– (quote (a b c)) (a b c)

• Shorthand: single quotation mark

‘a == (quote a)

‘(a b c) == (quote (a b c))

Global Definitions

• Use define function

(define f 20)

(define evens ‘(0 2 4 6 8))

(define odds ‘(1 3 5 7 9))

(define color ‘red)

(define color blue) ; Error, blue undefined

(define num f) ; num = 20

(define num ‘f) ; symbol f

(define s “hello world”) ; String

13

Lambda functions

• Anonymous functions

– (lambda (<formals>) <expression>)

– (lambda (x) (* x x))

– ((lambda (x) (* x x)) 5) 25

• Motivation

– Can create functions as needed

– Temporary functions : don’t have to have
names

• Can not use recursion

Named Functions

• Use define to bind a name to a lambda expression

(define square (lambda (x) (* x x)))

(square 5)

• Using lambda all the time gets tedious; alternate syntax:

(define (<function name> <formals>) <expression1> <expression2> …)

Last expression evaluated is the one returned

(define (square x) (* x x))

(square 5) 25

14

Conditionals

(if <predicate> <expression1> <expresion2>)

 - Return value is either expr1 or expr2

(cond (P1 E1)

 (P2 E2)

 (Pn En)

 (else En+1))

 - Returns whichever expression is evaluated

Common Predicates

• Names of predicates end with ?

– Number? : checks if the argument is a number

– Symbol? : checks if the argument is a symbol

– Equal? : checks if the arguments are

structurally equal

– Null? : checks if the argument is empty

– Atom? : checks if the argument is an atom

• Appears undefined in Racket but can define

ourselves

– List? : checks if the argument is a list

15

Conditional Examples

• (if (equal? 1 2) ‘x ‘y) ; y

• (if (equal? 2 2) ‘x ‘y) ; x

• (if (null? ‘()) 1 2) ; 1

• (cond

 ((equal? 1 2) 1)

 ((equal? 2 3) 2)

 (else 3)) ; 3

• (cond
 ((number? ‘x) 1)

 ((null? ‘x) 2)

 ((list? ‘(a b c)) (+ 2 3)) ; 5

)

Dissecting a List

• Car : returns the first argument

– (car ‘(2 3 4))

– (car ‘((2) 4 4))

– Defined only for non-null lists

• Cdr : (pronounced “could-er”) returns the rest of
the list

– Racket: list must have at least one element

– Always returns a list
• (cdr ‘(2 3 4))

• (cdr ‘(3))

• (cdr ‘(((3))))

• Compose

• (car (cdr ‘(4 5 5)))

• (cdr (car ‘((3 4))))

16

Shorthand

• (cadr x) = (car (cdr x))

• (cdar x) = (cdr (car x))

• (caar x) = (car (car x))

• (cddr x) = (cdr (cdr x))

• (cadar x) = (car (cdr (car x)))

• … etc… up to 4 levels deep in Racket

• (cddadr x) = ?

Why Car and Cdr?

• Leftover notation from original

implementation of Lisp on an IBM 704

• CAR = Contents of Address part of Register

– Pointed to the first thing in the current list

• CDR = Contents of Decrement part of

Register

– Pointed to the rest of the list

17

Building a list

• Cons

– Cons(truct) a new list from first and rest

– Takes two arguments

– Second should be a list

• If it is not, the result is a “dotted pair” which
is typically considered a malformed list

– First may or may not be a list

– Result is always a list

Building a list

X = 2 and Y = (3 4 5) : (cons x y)

 (2 3 4 5)

X = () and Y =(a b c) : (cons x y)

 (() a b c)

X = a and Y =() : (cons x y)

 (a)

• What is

– (cons 'a (cons 'b (cons 'c '())))

– (cons (cons ‘a (cons ‘b ‘())) (cons ‘c ‘()))

18

Numbers

• Regular arithmetic operators are available

 +, -, *, /

– May take variable arguments

 (+ 2 3 4), (* 4 5 9 11)

• (/ 9 2) 4.5 ; (quotient 9 2) 4

• Regular comparison operators are available

 < > <= >= =

• E.g. (= 5 (+ 3 2)) #t

 = only works on numbers, otherwise use

equal?

Example

• Sum all numbers in a list

(define (sumall list)

 (cond

 ((null? list) 0)

 (else (+ (car list) (sumall (cdr list))))))

Sample invocation: (sumall ‘(3 45 1))

19

Example

• Make a list of n identical values

(define (makelist n value)

 (cond

 ((= n 0) '())

 (else

 (cons value (makelist (- n 1) value))

)

)

)

In longer programs, careful matching parenthesis.

Example

• Determining if an item is a member of a list

 (define (member? item list)

 (cond ((null? list) #f)

 ((equal? (car list) item) #t)

 (else (member? item (cdr list)))

)

)

Scheme already has a built-in (member item list) function

that returns the list after a match is found

20

Example

• Remove duplicates from a list

(define (remove-duplicates list)

 (cond ((null? list) '())

 ((member? (car list) (cdr list))

 (remove-duplicates (cdr list)))

 (else

 (cons (car list) (remove-duplicates (cdr list))))

)

)

