Functional Programming in
Scheme

CS331
Chapter 10

Functional Programming

 Online textbook: http://www.htdp.org/

« Original functional language is LISP
— LISt Processing
— The list is the fundamental data structure
— Developed by John McCarthy in the 60°s

« Used for symbolic data processing
« Example apps: symbolic calculations in integral and differential
calculus, circuit design, logic, game playing, Al
« As we will see the syntax for the language is extremely simple
— Scheme
« Descendant of LISP

Functional Languages

* “Pure” functional language

— Computation viewed as a mathematical function mapping inputs to
outputs

— No notion of state, so no need for assignment statements (side effects)
— Iteration accomplished through recursion
* In practicality

— LISP, Scheme, other functional languages also support iteration,
assignment, etc.

— We will cover some of these “impure” elements but emphasize the
functional portion

» Equivalence
— Functional languages equivalent to imperative
« Core subset of C can be implemented fairly straightforwardly in Scheme
« Scheme itself implemented in C
« Church-Turing Thesis

LLambda Calculus

 Foundation of functional programming
« Developed by Alonzo Church, 1941
A lambda expression defines

— Function parameters

— Body

+ Does NOT define a name; lambda is the nameless
function. Below x defines a parameter for the
unnamed function:

(AX- X * X)

LLambda Calculus

 Given a lambda expression

(AX- X*X)

« Application of lambda expression
(Ax-x*%x)2) >4

« Identity (AX- X)

. Constant2: (AX-2)

LLambda Calculus

» Any identifier is a lambda expression

« If M and N are lambda expressions, then the
application of M to N, (MN) is a lambda
expression

« An abstraction, written (AX-M) where x is
an identifier and M is a lambda expression,
Is also a lambda expression

LLambda Calculus

LambdaExpression — ident | (MN) | (4 ident - M)
M — LambdaExpression
N — LambdaExpression

Examples
X
(AX-X)
((Ax-x)(2y - y))

Lambda Calculus
First Class Citizens

 Functions are first class citizens
— Can be returned as a value
— Can be passed as an argument
— Can be put into a data structure as a value
— Can be the value of an expression

(AX-x%=X)(Ay-2)) =(IX-2%2) =4

((AX-(Ry-x+y)) 21) = ((hy-2+y) 1) =3

LLambda Calculus

Functional programming is essentially an
applied lambda calculus with built in

- constant values
- functions

E.g. in Scheme, we have (* X X) for x*x
instead of AX-X*X

Functional Languages

« Two ways to evaluate expressions

 Eager Evaluation or Call by Value
— Evaluate all expressions ahead of time
— Irrespective of if it is needed or not
— May cause some runtime errors

« Example

(foo 1 (/ 1 x)) Problem; divide by 0

LLambda Calculus

» Lazy Evaluation
— Evaluate all expressions only if needed
(foo 1 (/ 1 x)) ; (/ 1 x) not needed, so never eval’d
— Some evaluations may be duplicated
— Equivalent to call-by-name

— Allows some types of computations not possible in eager
evaluation

« Example
— Infinite lists
* E.g,. Infinite stream of 1°’s, integers, even numbers, etc.
— Replaces tail recursion with lazy evaluation call
— Possible in Scheme using (force/delay)

Running Scheme for Class

« A version of Scheme called Racket
(formerly PLT/Dr Scheme) is available on
the Windows machines in the CS Lab

» Download: http://racket-lang.org/
» Unix, Mac versions also available if desired

Racket

 You can type code directly into the
interpreter and Scheme will return with the
results:

€ Untitled - DrRacket® SRACE X

File Edit View Language Racket Insert Tabs Help
Untitled ™ (define ..) v Save (5] Macro Stepper §' Bl Debug @Bl Check syntax O Runp Stop Il

|
Welcome to DrRacket, version 5.2.1 [3m].
Language: R5RS; memary limit: 128 MB.

i[> = 3 3

g

> (* 10 2)

20

> ((lambda (x) (* 3 x)) 4)
1z

>

RSRS™ 9:2 &

Make sure right Language is selected

Choose Language =)

Use the language declared in the source (ctl-U)
The $lang line at the start of a program
declares its [anguage. This is the default
and preferred mode for DrRacket.

@ Chossea nguege e I like to use the

Teaching Languages
How to Design Programs :
G “Pretty Big”

Legacy Languages language choice

R5RS

Swindle

Experimental Languages
Lazy Racket
FrTime
Algal 60
| Adds syntax and functions from the HtDP language|
Show Details | [ok][Concel

Welcome to DrRacket, version 5.2.1 [3m].
Language: Beginning Student; memaory limit: 128 MB.
bda (x) (+ 1 x) 1)

i found a lambda that

is not a2

Racket — Loading Code

» You can open code saved in a file. Racket uses the
extension “.rkt” so consider the following file “factorial.rkt”
created with a text editor or saved from Racket: 2: Run

1: Open L .
ge Racket Insert Tabs Help

]
\\\\\\‘ Fi
fa Macro Stepper 8 PPl Debug @Bl Check Syntax D4 Run b stop Il

(define factorial (eona o

(Iambda (n) . (else (* n (factorial (- mn 1))))

(cond ‘
(En1)1)

(else (* n (factorial (- n 1))))

Welcome to DiRacket, version 5.2.1 [3m]
) Language: Pretty Big; memory limit: 128 MB.
> (factorial 4
21

) ST ——— 3 Invoke functions

Functional Programming
Overview

« Pure functional programming
— No implicit notion of state

— No need for assignment statement
* No side effect

— Looping
* No state variable
» Use Recursion

« Most functional programming languages have side
effects, including Scheme
— Assignments
— Input/Qutput

Scheme Programming Overview

- Refreshingly simple

- Syntax is learned in about 10 seconds
- Surprisingly powerful

- Recursion

- Functions as first class objects (can be value of an expression,
passed as an argument, put in a data structure)

- Implicit storage management (garbage collection)
- Lexical scoping
- Earlier LISPs did not do that (dynamic)

- Interpreter
- Compiled versions available too

Expressions

« Syntax - Cambridge Prefix
— Parenthesized
—(*34)
—-(*(+23)59)
—(f34)
* In general:
— (functionName argl arg2 ...)

« Everything is an expression
— Sometimes called s-expr (symbolic expr)

Expression Evaluation

 Replace symbols with their bindings

« Constants evaluate to themselves
— 2,44, #f
— No nil in Racket; use ‘()
 Nil = empty list, but Racket does have empty
« Lists are evaluated as function calls written
in Cambridge Prefix notation
(+23)
(*(+23)5)

10

Scheme Basics

 Atom

— Anything that can’t be decomposed further

« a string of characters beginning with a letter,
number or special character other than (or)

e e.g. 2, #t, #f, “hello”, foo, bar
o #t =true
 #f = false

 List
— A list of atoms or expressions enclosed in ()

— (0, empty,(1 2 3), (x (2 3)), (000)

Scheme Basics

» S-expressions
— Atom or list

* () or empty
— Both atom and a list

 Length of a list
— Number at the top level

11

Quote

« If we want to represent the literal list (a b c)

— Scheme will interpret this as apply the
arguments b and c to function a

» To represent the literal list use “quote”
— (quote xX) =2 x
—(quote (abc)) 2> (abc)

 Shorthand: single quotation mark
‘a==(quote a)
‘(abc)==(quote (ab c))

Global Definitions

» Use define function

(define f 20)

(define evens ‘(0 2 4 6 8))
(define odds ‘(1 3579))
(define color ‘red)

(define color blue) ; Error, blue undefined
(define num f) ; num = 20

(define num °f) ; symbol f

(define s “hello world”) ; String

12

Lambda functions

» Anonymous functions
— (lambda (<formals>) <expression>)
— (lambda (x) (* x X))
— ((lambda (x) (* x X)) 5) = 25
» Motivation
— Can create functions as needed

— Temporary functions : don’t have to have
names

« Can not use recursion

Named Functions

+ Use define to bind a name to a lambda expression

(define square (lambda (x) (* x x)))
(square 5)

+ Using lambda all the time gets tedious; alternate syntax:
(define (<function name> <formals>) <expression1> <expression2> ...)

Last expression evaluated is the one returned

(define (square x) (* x X))
(square 5) > 25

13

Conditionals

(if <predicate> <expressionl> <expresion2>)
- Return value is either exprl or expr2

(cond (P1 E1)
(P2 E2)
(Py Ey)
(else En+1))

- Returns whichever expression is evaluated

Common Predicates

» Names of predicates end with ?
— Number? : checks if the argument is a number
— Symbol? : checks if the argument is a symbol

— Equal? : checks if the arguments are
structurally equal

— Null? : checks if the argument is empty

— Atom? : checks if the argument is an atom

 Appears undefined in Racket but can define
ourselves

— List? : checks if the argument is a list

14

Conditional Examples

(if (equal? 1 2) x ‘y) Y
(if (equal? 2 2) ‘x ‘y) ;X
(if (null? () 1 2) -
(cond

((equal? 12) 1)
((equal? 2 3) 2)
(else 3)) ;3

(cond
((number? ‘x) 1)
((mull? “x) 2)
((list? “(abce)) (+23)))

Dissecting a List

Car : returns the first argument
— (car ‘(23 4))
— (car °((2) 4 4))
— Defined only for non-null lists
Cdr : (pronounced “could-er”) returns the rest of
the list
— Racket: list must have at least one element
— Always returns a list
* (cdr(234))
* (cdr <(3))
* (cdr (((3)))
Compose
* (car(cdr ‘(4 55)))

* (cdr (car ‘(3 4))))

15

Shorthand

* (cadr x) = (car (cdr x))

* (cdar x) = (cdr (car x))

* (caar x) = (car (car x))

* (cddr x) = (cdr (cdr x))

* (cadar x) = (car (cdr (car x)))

e ...etc... upto 4 levels deep in Racket
 (cddadr x) =?

Why Car and Cdr?

« Leftover notation from original
implementation of Lisp on an IBM 704

» CAR = Contents of Address part of Register
— Pointed to the first thing in the current list

» CDR = Contents of Decrement part of
Register
— Pointed to the rest of the list

16

Building a list

« Cons
— Cons(truct) a new list from first and rest
— Takes two arguments

— Second should be a list

« [f it is not, the result is a “dotted pair” which
Is typically considered a malformed list

— First may or may not be a list
—Result is always a list

Building a list

X=2and Y=(345):(consxy) >
(2345)
X=(0andY =(@abc):(consxy) >
(Oabc)
X=aand Y =():(consxy) >
(a)
« What is
— (cons 'a (cons 'b (cons 'c '())))
— (cons (cons ‘a (cons ‘b ())) (cons ‘¢ ()))

17

Numbers

» Regular arithmetic operators are available
+, -1 *l /

— May take variable arguments
(+234),(*45911)
*(/92) > 45; (quotient92) =>4
» Regular comparison operators are available
<><=>==
*Eg. =5 ((+32) > #t
= only works on numbers, otherwise use
equal?

Example

e Sum all numbers in a list

(define (sumall list)
(cond
((null? list) 0)
(else (+ (car list) (sumall (cdr list))))))

Sample invocation: (sumall ‘(3 45 1))

18

Example

« Make a list of n identical values

(define (makelist n value)
(cond
(=n0)'0)
(else
(cons value (makelist (- n 1) value))

)
)
)

In longer programs, careful matching parenthesis.

Example

» Determining if an item is a member of a list

(define (member? item list)
(cond ((null? list) #f)
((equal? (car list) item) #t)
(else (member? item (cdr list)))
)
)

Scheme already has a built-in (member item list) function
that returns the list after a match is found

19

Example

» Remove duplicates from a list

(define (remove-duplicates list)
(cond ((null? list) *()
((member? (car list) (cdr list))
(remove-duplicates (cdr list)))
(else
(cons (car list) (remove-duplicates (cdr list))))
)

)

20

