| T T ®

1 9 Java Never Ends

thread

And thick and fast they came at last,
And more, and more, and more —

LEWIS CARROLL, Through the Looking-Glass

Introduction

Of course there is only a finite amount of Java, but when you consider all the standard
libraries and other accompanying software, the amount of power and the amount to
learn seem to be endless. In this chapter, we give you a brief introduction to five topics
to give you a flavor of some of the directions you can take in extending your
knowledge of Java. The five topics are multithreading, networking with stream sockets,
JavaBeans, the interaction of Java with database systems, and Web programming with
Java Server Pages.

Prerequisites

You really should cover most of the book before covering this chapter. However,
Section 19.1 requires only Chapters 17 and 18 and their prerequisites. Section 19.2
requires Chapters 1 through 5, 9, and 10. Sections 19.3 and 19.4 require only
Chapters 1 through 6. Section 19.5 requires an understanding of HTML, which
is given in Chapter 20. Chapter 20 is distributed as a file on the website included
in this book. Aside from references to Section 19.1 in Section 19.2, all sections are
independent of each other and may be read in any order.

19.1 Multithreading

“Can you do two things at once?”
“I have trouble doing one thing at once.”

Part of a job interview

A thread is a separate computation process. In Java, you can have programs with
multiple threads. You can think of the threads as computations that execute in
parallel. On a computer with enough processors, the threads might indeed execute
in parallel. However, in most normal computing situations, the threads do not really
do this. Instead, the computer switches resources between threads so that each thread
in turn does a little bit of computing. To the user, this looks like the processes are
executing in parallel.

You have already experienced threads. Modern operating systems allow you to run
more than one program at the same time. For example, rather than waiting for your virus

‘ | M19_SAVT0310_01_SE_C19.ndd 1080 @

2/2/12 1:10 PM | ‘

| T T ® (| |

Multithreading 1081

scanning program to finish its computation, you can go on to, say, read your e-mail while
the virus scanning program is still executing. The operating system is using threads to
make this happen. There may or may not be some work being done in parallel depending
on your computer and operating system. Most likely, the two computation threads are
simply sharing computer resources so that they take turns using the computer’s resources.
When reading your e-mail, you may or may not notice that response is slower because
resources are being shared with the virus scanning program. Your e-mail reading program
is indeed slowed down, but because humans are so much slower than computers, any
apparent slowdown is likely to be unnoticed.

EXAMPLE: A Nonresponsive GUI

Display 19.1 contains a very simple action GUL. When the "start" button is
clicked, the GUI draws circles one after the other until a large portion of the window
is filled with circles. There is 1/10 of a second pause between the drawing of each
circle. So, you can see the circles appear one after the other. If you are interested in
Java programming, this can be pretty exciting for the first few circles, but it quickly
becomes boring. You are likely to want to end the program early, but if you click the
close-window button, nothing will happen until the program is finished drawing all
@ its little circles. We will use threads to fix this problem, but first let us understand @
this program, which does not really use threads in any essential way, despite the
occurrence of the word Thread in the program. We explain this Swing program in
the next few subsections.

Thread.sleep

In Display 19.1, the following method invocation produces a 1/10 of a second pause
after drawing each of the circles:

doNothing (PAUSE) ;
which is equivalent to
doNothing(100) ;

The method doNothing is a private helping method that does nothing except call the
method Thread.sleep and take care of catching any thrown exception. So, the pause
is really created by the method invocation

Thread.sleep Thread.sleep(100) ;

This is a static method in the class Thread that pauses whatever thread includes the
invocation. It pauses for the number of milliseconds (thousandths of a second) given
as an argument. So, this pauses the computation of the program in Display 19.1 for
100 milliseconds or 1/10 of a second.

‘ | M19_SAVT0310_01_SE_C19.indd 1081 @ 2/2112 1:10 PM| ‘

| T T ®

1082

CHAPTER 19 Java Never Ends

“Wait a minute,” you may think, “the program in Display 19.1 was not supposed
to use threads in any essential way.” That is basically true, but every Java program uses
threads in some way. If there is only one stream of computation, as in Display 19.1,
then that is treated as a single thread by Java. So, threads are always used by Java, but
not in an interesting way until more than one thread is used.

You can safely think of the invocation of

Thread.sleep(milliseconds) ;

as a pause in the computation that lasts (approximately) the number of milliseconds
given as the argument. (If this invocation is in a thread of a multithreaded program,
then the pause, like anything else in the thread, applies only to the thread in which
it occurs.)

The method Thread.sleep can sometimes be handy even if you do not do any
multithreaded programming. The class Thread is in the package java.lang and so
requires no import statement.

Display 19.1 Nonresponsive GUI (part 1 of 3)

W J 0 Ul b W N

10
11
12
13
14
15
16
17
18
19

20

21
22
23
24
25

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JButton;

import java.awt.BorderLayout;

import java.awt.FlowLayout;

import java.awt.Graphics;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

/**

Packs a section of the frame window with circles, one at a time.

*/

public class FillDemo extends JFrame implements ActionListener

{

public static final int WIDTH = 300;

public static final int HEIGHT = 200;

public static final int FILL WIDTH = 300;

public static final int FILL HEIGHT = 100;

public static final int CIRCLE_SIZE = 10;

public static final int PAUSE = 100; //milliseconds

private JPanel box;

public static void main(Stringl[] args)

{

FillDemo gui = new FillDemo() ;
gui.setVisgible (true) ;

‘ | M19_SAVT0310_01_SE_C19.indd 1082 @

2/2/12 1:10 PM | ‘

Multithreading 1083

Display 19.1 Nonresponsive GUI (part 2 of 3)

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

41
42
43
44

45
46
47

48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67

‘ | M19_SAVT0310_01_SE_C19.ndd 1083 @ 212142 1:10 PM| ‘

public FillDemo ()

{
setSize (WIDTH, HEIGHT);
setTitle ("FillDemo") ;
setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
setLayout (new BorderLayout ()) ;
box = new JPanel () ;
add (box, "Center") ;
JPanel buttonPanel = new JPanel () ;
buttonPanel.setLayout (new FlowLayout ()) ;
JButton startButton = new JButton ("Start") ;
startButton.addActionListener (this) ;
buttonPanel.add (startButton) ;
add (buttonPanel, "South") ;

1

public void actionPerformed (ActionEvent e)

{ , ,
£i11() ; Nothing else can happen until

} ‘*““—————______________actionPerformedretwws,whkh

does not happen until £111 returns.

public void £il1l ()

{
Graphics g = box.getGraphics() ;
for (int y = 0; y < FILL _HEIGHT; vy = y + CIRCLE_SIZE)
for (int x = 0; x < FILL WIDTH; x = x + CIRCLE SIZE)
{
g.filloval (x, y, CIRCLE SIZE, CIRCLE_SIZE);
doNothing (PAUSE) ;
}
} Everything stops for
100 milliseconds
public void doNothing(int milliseconds) (1/10 of a second)
{
try
{
Thread.sleep(milliseconds) ;
}
catch (InterruptedException e)
{
System.out.println ("Unexpected interrupt") ;
System.exit (0) ;
}
1

(continued)

CHAPTER 19 Java Never Ends

Display 19.1 Nonresponsive GUI (part 3 of 3)

RESULTING GUI (When started)

& FillDemo E‘@‘E‘

| st |

RESULTING GUI (While drawing circles)

Fiettttttttttttttittittititied
Ftt+ddtdttd

g

RESULTING GUI (After all circles are drawn)

i

Ifyou click the close-window button
while the circles are being drawn,
the window will not close until all
the circles are drawn.

The method Thread.sleep can throw an InterruptedException, which is a
checked exception—that is, it must be either caught in a catch block or declared in a
throws clause. We do not discuss InterruptedException in this book, leaving it for
more advanced books on multithreaded programming, but it has to do with one thread
interrupting another thread. We will simply note that an InterruptedException
may be thrown by Thread.sleep and so must be accounted for—in our case, by a
Simple catch block. The class InterruptedException is in the java.lang package
and so requires no import statement.

‘ | M19_SAVT0310_01_SE_C19.indd 1084

2/2/12 1:10 PM | ‘

getGraphics

Multithreading

Thread.sleep

Thread.sleep is a static method in the class Thread that pauses the thread that includes
the invocation. It pauses for the number of milliseconds (thousandths of a second) given as
an argument.

The method Thread. sleep may throw an InterruptedException, which is a checked
exception and so must be either caught in a catch block or declared in a throws clause.

The classes Thread and InterruptedException are both in the package java.lang,
so neither requires any import statement.

Note that Thread.sleep can be invoked in an ordinary (single thread) program of the kind
we have seen before this chapter. It will insert a pause in the single thread of that program.

SYNTAX

Thread.sleep (Number_Of_Milliseconds) ;
EXAMPLE

try

{

Thread.sleep(100); //Pause of 1/10 of a second

}
catch (InterruptedException e)
{
System.out.println ("Unexpected interrupt") ;
}

The getGraphics Method

The other new method in Display 19.1 is the getGraphics method, which is used in
the following line from the method £i11:

Graphics g = box.getGraphics() ;

The getGraphics method is almost self-explanatory. As we already noted
in Chapter 18, almost every item displayed on the screen (more precisely, every
Jcomponent) has an associated Graphics object. The method getGraphics
is an accessor method that returns the associated Graphics object (of the calling
object for getGraphics)—in this case, the Graphics object associated with the panel
box. This gives us a Graphics object that can draw circles (or anything else) in the
panel box.

We still need to say a bit more about why the program in Display 19.1 makes you
wait before it will respond to the close-window button, but otherwise this concludes
our explanation of Display 19.1. The rest of the code consists of standard things we
have seen before.

‘ | M19_SAVT0310_01_SE_C19.ndd 1085 @

1085

2/2/12 1:10 PM | ‘

| T T ®

1086

CHAPTER 19 Java Never Ends

getGraphics

Every JComponent has an associated Graphics object. The method getGraphics is an
accessor method that returns the associated Graphics object of its calling object.

SYNTAX
Component.getGraphics () ;

EXAMPLE (see Display 19.1 for context)
Graphics g = box.getGraphics();

Fixing a Nonresponsive Program Using Threads

Now that we have discussed the new items in the program in Display 19.1, we are
ready to explain why it is nonresponsive and to show you how to use threads to write a
responsive version of that program.

Recall that when you run the program in Display 19.1, it draws circles one after
the other to fill a portion of the frame. Although there is only a 1/10 of a second pause
between drawing each circle, it can still seem like it takes a long time to finish. So, you
are likely to want to abort the program and close the window early. But, if you click
the close-window button, the window will not close until the GUI is finished drawing
all the circles.

Here is why the close-window button is nonresponsive: The method £i11, which
draws the circles, is invoked in the body of the method actionperformed. So, the
method actionPerformed does not end until after the method £i11 ends. And, until
the method actionPerformed ends, the GUI cannot go on to do the next thing,
which is probably to respond to the close-window button.

Here is how we fixed the problem: We have the method actionPerformed create
a new (independent) thread to draw the circles. Once actionPerformed does this,
the new thread is an independent process that proceeds on its own. The method
actionPerformed has nothing more to do with this new thread; the work of
actionPerformed is ended. So, the main thread (the one with actionPerformed) is
ready to move on to the next thing, which will probably be to respond promptly to a
click of the close-window button. At the same time, the new thread draws the circles.
So, the circles are drawn, but at the same time a click of the close-window button will
end the program. The program that implements this multithreaded solution is given in
the next Programming Example.

EXAMPLE: A Multithreaded Program

Display 19.2 contains a program that uses a main thread and a second thread to
implement the technique discussed in the previous subsection. The general approach
was outlined in the previous subsection, but we need to explain the Java code details.
We do that in the next few subsections.

‘ | M19_SAVT0310_01_SE_C19.ndd 1086 @

2/2/12 1:10 PM | ‘

Thread

run ()

start ()

Multithreading

The Class Thread

In Java, a thread is an object of the class Thread. The normal way to program a thread
is to define a class that is a derived class of the class Thread. An object of this derived
class will be a thread that follows the programming given in the definition of the
derived (thread) class.

Where do you do the programming of a thread? The class Thread has a method
named run. The definition of the method run is the code for the thread. When the
thread is executed, the method run is executed. Of course, the method defined in the
class Thread and inherited by any derived class of Thread does not do what you want
your thread to do. So, when you define a derived class of Thread, you override the
definition of the method run to do what you want the thread to do.

In Display 19.2, the inner class Packer is a derived class of the class Thread. The
method run for the class Packer is defined to be exactly the same as the method £i11
in our previous, unresponsive GUI (Display 19.1). So, an object of the class Packer
is a thread that will do what £111 does, namely draw the circles to fill up a portion of
the window.

The method actionPerformed in Display 19.2 differs from the method
actionPerformed in our older, nonresponsive program (Display 19.1) in that the
invocation of the method £i11 is replaced with the following:

Packer packerThread = new Packer();
packerThread.start ();

This creates a new, independent thread named packerThread and starts it
processing. Whatever packerThread does, it does as an independent thread. The main
thread can then allow actionPerformed to end and the main thread will be ready to
respond to any click of the close-window button.

Display 19.2 Threaded Version of FillDemo (part 1 of 3)

W J 0 Ul b W N

10
11
12
13
14
15
16

import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JButton;
import java.awt.BorderLayout;
import java.awt.FlowLayout;
import java.awt.Graphics;

The GUI produced is identical to the
GUI produced by Display 19.1 except
that in this version the close-window
button works even while the circles are
being drawn, so you can end the GUI
early if you get bored.

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class ThreadedFillDemo extends JFrame implements ActionListener

{

public static final int WIDTH = 300;

public static final int HEIGHT = 200;

public static final int FILL WIDTH = 300;

public static final int FILL HEIGHT 100;

public static final int CIRCLE_SIZE = 10;

public static final int PAUSE = 100; //milliseconds

(continued)

‘ | M19_SAVT0310_01_SE_C19.indd 1087 @

1087

2/2/12 1:10 PM | ‘

| T T ®

1088

CHAPTER 19 Java Never Ends

Display 19.2 Threaded Version of FillDemo (part 2 of 3)

17

18
19
20
21
22

23
24
25
26
27

28

29
30

31
32
33
34
35
36
37

38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54

private JPanel box;

public static void main(Stringl[] args)

{
ThreadedFillDemo gui = new ThreadedFillDemo() ;
gui.setVisgible (true) ;

public ThreadedFillDemo ()
setSize (WIDTH, HEIGHT) ;
setTitle ("Threaded Fill Demo") ;
setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

setLayout (new BorderLayout ()) ;

box = new JPanel () ;
add (box, "Center") ;

JPanel buttonPanel = new JPanel () ;

buttonPanel.setLayout (new FlowLayout ()) ;

JButton startButton = new JButton ("Start") ;

startButton.addActionListener (this) ;

buttonPanel.add (startButton) ;

add (buttonPanel, "South"); You need a thread object,

} even if there are no

instance variables in the

public void actionPerformed (ActionEvent e) class definition of Packer.

{

Packer packerThread = new Packer() ;

packerThread.start () ;
} \

private class Packer extends Thread

start “starts”the thread and calls run.

{ run is inherited from Thread but needs to be
public void run() <——————— overridden. This definition of run is identical
{ to that of £111 in Display 19.1.

Graphics g = box.getGraphics () ;
for (int y = 0; y < FILL_HEIGHT; y = y + CIRCLE_SIZE)
for (int x = 0; x < FILL WIDTH; x = x + CIRCLE SIZE)
{
g.filloval(x, y, CIRCLE SIZE, CIRCLE_STIZE);
doNothing (PAUSE) ;

‘ | M19_SAVT0310_01_SE_C19.ndd 1088 @

2/2/12 1:10 PM | ‘

Multithreading

Display 19.2 Threaded Version of FillDemo (part 3 of 3)

55
56
57
58
59
60
61
62
63
64
65
66
67

68

public void doNothing (int milliseconds)

{

try

{
}

catch (InterruptedException e)

{

Thread.sleep(milliseconds) ;

System.out .println("Unexpected interrupt");
System.exit (0) ;

}

} //End Packer inner class

run ()

We need only to discuss the method start and we will be through with our
explanation. The method start initiates the computation (process) of the calling
thread. It performs some overhead associated with starting a thread and then it invokes
the run method for the thread. As we have already seen, the run method of the class
packer in Display 19.2 draws the circles we want, so the invocation

packerThread.start ();

does this as well, because it calls run. Note that you do not invoke run directly. Instead,
you invoke start, which does some other needed things and then invokes run.

This ends our explanation of the multithreaded program in Display 19.2, but
there is still one, perhaps puzzling, thing about the class packer that we should
explain. The definition of the class Packer includes no instance variables. So, why
do we need to bother with an object of the class packer? Why not simply make all
the methods static and call them with the class name Packer? The answer is that the
only way to get a new thread is to create a new Thread object. The things inherited
from the class Thread are what the object needs to be a thread. Static methods do not
a thread make. In fact, not only will static methods not work, the compiler will not
even allow you to define run to be static. This is because run is inherited from Thread
as a nonstatic method; this cannot be changed to static when overriding a method
definition. The compiler will not let you even try to do this without creating an object
of the class packer.

‘ | M19_SAVT0310_01_SE_C19.ndd 1089 @

1089

2/2/12 1:10 PM | ‘

| T T ®

1090

CHAPTER 19 Java Never Ends

The Thread Class

A thread is an object of the class Thread. The normal way to program a thread is to define
a class that is a derived class of the class Thread. An object of this derived class will be a
thread that follows the programming given in the definition of the derived (thread) class’s
method named run.

Any thread class inherits the method start from the class Thread. An invocation of
start by an object of a thread class will start the thread and invoke the method run for
that thread.

See Display 19.2 for an example.

The rRunnable Interface x

There are times when you would rather not make a thread class a derived class of the
class Thread. The alternative to making your class a derived class of the class Thread is
to have your class instead implement the Runnable interface. The Runnable interface
has only one method heading:

public void run()

A class that implements the Runnable interface must still be run from an instance of
the class Thread. This is usually done by passing the Runnable object as an argument
to the thread constructor. The following is an outline of one way to do this:

public class ClassToRun extends SomeClass implements Runnable

{
public void run()
{
//Fill this just as you would if ClassToRun
//were derived from Thread.
1
public void startThread()
{
Thread theThread = new Thread(this) ;
theThread.run () ;
1
1

The previous method startThread is not compulsory, but it is one way to produce
a thread that will in turn run the run method of an object of the class classToRun.
In Display 19.3, we have rewritten the program in Display 19.2 using the Runnable
interface. The program behaves exactly the same as the one in Display 19.2.

‘ | M19_SAVT0310_01_SE_C19.ndd 1090 @

2/2/12 1:10 PM | ‘

Multithreading 1091

Display 19.3 The Runnable Interface (part 1 of 2)

1 import javax.swing.JFrame;

2 import javax.swing.JPanel;

3 import javax.swing.JButton;

4 import java.awt.BorderLayout;

5 import java.awt.FlowLayout;

6 import java.awt.Graphics;

7 import java.awt.event.ActionListener;

8 import java.awt.event.ActionEvent;

9 public class ThreadedFillDemo2 extends JFrame

10 implements ActionListener, Runnable
11 |

12 public static final int WIDTH = 300;

13 public static final int HEIGHT = 200;

14 public static final int FILL WIDTH = 300;

15 public static final int FILL HEIGHT = 100;

16 public static final int CIRCLE_SIZE = 10;

17 public static final int PAUSE = 100; //milliseconds
18 private JPanel box;

19 public static void main(Stringl[] args)

20 { @
21 ThreadedFillDemo2 gui = new ThreadedFillDemo2 () ;
22 gui.setVisgible (true) ;

23 }

24 public ThreadedFillDemo2 ()

25 {

26 setSize (WIDTH, HEIGHT) ;

27 setTitle ("Threaded Fill Demo") ;

28 setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
29 setLayout (new BorderLayout ()) ;

30 box = new JPanel () ;

31 add (box, "Center") ;

32 JPanel buttonPanel = new JPanel () ;

33 buttonPanel. setLayout (new FlowLayout ()) ;

34 JButton startButton = new JButton ("Start") ;

35 startButton.addActionListener (this) ;

36 buttonPanel.add (startButton) ;

37 add (buttonPanel, "South") ;

38 }

‘ | M19_SAVT0310_01_SE_C19.indd 1091 @

(continued)

2/2/12 1:10 PM | ‘

| T T ®

1092

CHAPTER 19 Java Never Ends

Display 19.3 The Runnable Interface (part 2 of 2)

39
40
41
42

43
44
45
46
47
48
49
50
51
52

53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70

public void actionPerformed (ActionEvent e)

{
}

startThread () ;

public void run/()

{
Graphics g = box.getGraphics() ;
for (int y = 0; y < FILL _HEIGHT; y = y + CIRCLE_SIZE)
for (int x = 0; x < FILL WIDTH; x = x + CIRCLE SIZE)

{
g.filloval (x, y, CIRCLE STZE, CIRCLE_SIZE);
doNothing (PAUSE) ;

public void startThread()

{

Thread theThread = new Thread(this) ;
theThread. start () ;

public void doNothing (int milliseconds)

{

try

{
}

catch (InterruptedException e)

{

Thread.sleep(milliseconds) ;

System.out.println ("Unexpected interrupt") ;
System.exit (0) ;

MyProgramminglab’

Self-Test Exercises

1. Because sleep is a static method, how can it possibly know what thread it needs
to pause?

2. Where was polymorphism used in the program in Display 19.2? (Hint: We are
looking for an answer involving the class Packer.)

‘ | M19_SAVT0310_01_SE_C19.indd 1092 @

2/2/12 1:10 PM | ‘

race condition

Multithreading

Race Conditions and Thread Synchronization x

When multiple threads change a shared variable, it is sometimes possible that the
variable will end up with the wrong (and often unpredictable) value. This is called a
race condition because the final value depends on the sequence in which the threads
access the shared value.

For example, consider two threads where each thread runs the following code:

int local;

local = sharedVariable;
local++;
sharedvVariable = local;

The intent is for each thread to increment sharedvariable by one so if there are
two threads, then sharedvariable should be incremented by two. However, consider
the case where sharedvariable is 0. The first thread runs and executes the first two
statements, so its variable 1ocal is set to 0. Now there is a context switch to the second
thread. The second thread executes all four statements, so its variable 1ocal is set to 0
and incremented, and sharedvariable is set to 1. Now we return to the first thread
and it continues where it left off, which is the third statement. The variable 1ocal is 0
so it is incremented to 1 and then the value 1 is copied into sharedvariable. The end
result after both threads are done is that sharedvariable has the value 1, and we lost
the value written by thread two!

You might think that this problem could be avoided by replacing our code with a
single statement such as

sharedvVariable++;

Unfortunately, this will not solve our problem because the statement is not
guaranteed to be an “atomic” action and there could still be a context switch to another
thread “in the middle” of executing the statement.

To demonstrate this problem, consider the counter class shown in Display 19.4.
This simple class merely stores a variable that increments a counter. It uses the
somewhat roundabout way to increment the counter on purpose to increase the
likelihood of a race condition.

The way we will demonstrate the race condition is to do the following:

1. Create a single instance of the counter class.

2. Create an array of many threads (30,000 in the example) where each thread
references the single instance of the Counter class.

3. Each thread runs and invokes the increment () method.

4. Wait for each thread to finish and then output the value of the counter. If
there are no race conditions, then its value should be 30,000. If there are race
conditions, then the value will be less than 30,000.

We create many threads to increase the likelihood that the race condition occurs.
With only a few threads, it is not likely that there will be a switch to another thread
inside the increment () method at the right point to cause a problem.

‘ | M19_SAVT0310_01_SE_C19.indd 1093 @

1093

2/2/12 1:10 PM | ‘

| T T ®

1094

CHAPTER 19 Java Never Ends

Display 19.4 The counter Class

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

public class Counter

{

private int counter;
public Counter ()

{
}

public int wvalue()

{
}

public void increment ()

{

counter = 0;

return counter;

int local;

local = counter;
local++;

counter = local;

o

VideoNote
Walkthrough
of a Program
with Race
Conditions

Display 19.5 The RaceConditionTest Class (part 1 of 2)

The only new tool that we need for our demonstration program is a way to wait
for all the threads to finish. If we do not wait, then our program might output the
counter before all the threads have had a chance to increment the value. We can wait
by invoking the join () method for every thread we create. This method waits for the
thread to complete. The join() method throws InterruptedException. This is a

checked exception so we must use the try/catch mechanism.

The class RaceconditionTest in Display 19.5 illustrates the race condition. You
may have to run the program several times before you get a value less than 30,000.
Problems as a result of race conditions are often rare occurrences. This makes them

extremely hard to find and debug!

w N

public class RaceConditionTest extends Thread

{

private Counter countObject;

\ Stores a reference to a

public RaceConditionTest (Counter ctr)

{

countObject = ctr;

‘ | M19_SAVT0310_01_SE_C19.indd 1094 @

single Counter object.

2/2/12 1:10 PM | ‘

Multithreading

Display 19.5 The RaceConditionTest Class (part 2 of 2)

8
9
10
11

12
13
14
15
16

17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
37
38

public void run() Invokes the code in Display 19.4

{ / where the race condition occurs.

countObject.increment () ;

}

public static void main(String[] args)

{ The single instance of the Counter object.

int i; Array of 30,000 threads.
Counter masterCounter = new Counter () ; /

RaceConditionTest [] threads = new RaceConditionTest[30000];

System.out .println ("The counter is " + masterCounter.value()) ;
for (i = 0; 1 < threads.length; i++)
threads[i] = new RaceConditionTest (masterCounter) ;

threads [i] .start () ; \/
} Give each thread a reference to

the single Counter object and

// Wait for the threads to finish start each thread.
for (1 = 0; 1 < threads.length; i++)
{

try

{

threads [i] .join () ; «— Waitsfor the thread to complete.

}

catch (InterruptedException e)

{

System.out .println(e.getMessage()) ;

}
}

System.out.println("The counter is " + masterCounter.value()) ;

Sample Dialogue (output will vary)

The counter is 0
The counter is 29998

critical region

synchronized

So how do we fix this problem? The solution is to make each thread wait so only
one thread can run the code in increment () at a time. This section of code is called
a critical region. Java allows you to add the keyword synchronized around a critical
region to enforce the requirement that only one thread is allowed to execute in this
region at a time. All other threads will wait until the thread inside the region is finished.

‘ | M19_SAVT0310_01_SE_C19.ndd 1095 @

1095

2/2/12 1:10 PM | ‘

T [[[| ®

1096 CHAPTER19 Java Never Ends

In this particular case, we can add the keyword synchronized to either the method
or around the specific code. If we add synchronized to the increment () method in
the counter class, then it looks like this:

public synchronized void increment ()

{

int local;

local = counter;
local++;

counter = local;

If we add synchronized inside the code, then we can write

public void increment ()

{

int local;
synchronized (this)

{

local = counter;
local++;
counter = local;

}

Either version will result in a counter whose final value is always 30,000. There are
many other issues involved in thread management, concurrency, and synchronization.
These concepts are often covered in more detail in an operating systems or parallel
programming course.

Self-Test Exercises

3. In the run() method of Display 19.5, make the thread sleep a random amount
of time between one and five milliseconds. You should see an increase in the
number of problems caused by race conditions. Can you explain why?

4. Here is some code that synchronizes thread access to a shared variable. How
come it is not guaranteed to output 30,000 every time it is run?

public class Counter

{

private int counter;
public Counter ()

{

counter = 0;

‘ | M19_SAVT0310_01_SE_C19.ndd 1096 @

2/2/12 1:10 PM | ‘

Multithreading 1097

Self-Test Exercises (continued)

‘ | M19_SAVT0310_01_SE_C19.indd 1097

}

public int wvalue()

{
}

public synchronized void increment ()

{

return counter;

counter++;

public class RaceConditionTest extends Thread

{

private Counter countObject;
public RaceConditionTest (Counter ctr)

{
}

public void run()

{

countObject.increment () ;

}

public static void main(Stringl[] args)

{

int i;

countObject = ctr;

Counter masterCounter = new Counter () ;
RaceConditionTest [] threads = new RaceConditionTest[30000];
System.out.println("The counter is " + masterCounter.
value()) ;
for (1 = 0; 1 < threads.length; i++)
threads[i] = new RaceConditionTest (masterCounter) ;
threads[i] .start () ;
System.out.println("The counter is " + masterCounter.
value()) ;

@ 2/2/12 1:10 PM | ‘

| T T ®

1098

Transmission
Control
Protocol

(TCP)

s€rver

client

User
Datagram
Protocol

(UDP)

sockets

POI‘t

CHAPTER 19 Java Never Ends

19.2 Networking with Stream Sockets

Since in order to speak, one must first listen, learn to speak by listening.
MEVLANA RUMI

When computers want to communicate with each other over a network, each computer
must speak the same “language.” In other words, the computers need to communicate
using the same protocol. One of the most common protocols today is TCP, or the
Transmission Control Protocol. For example, the HTTP protocol used to transmit
Web pages is based on TCP. TCP is a stream-based protocol in which a stream of data
is transmitted from the sender to the receiver. TCP is considered a reliable protocol
because it guarantees that data from the sender is received in the same order in which it
was sent. An analogy to TCP is the telephone system. A connection is made when the
phone is dialed and the participants communicate by speaking back and forth. In TCP,
the receiver must first be listening for a connection, the sender initiates the connection,
and then the sender and receiver can transmit data. The program that is waiting for a
connection is called the server and the program that initiates the connection is called
the client.

An alternate protocol is UDP, or the User Datagram Protocol. In UDP, packets of
data are transmitted but no guarantee is made regarding the order in which the packets
are received. An analogy to UDP is the postal system. Letters that are sent might be
received in an unpredictable order, or lost entirely with no notification. Although Java
provides support for UDP, we will only introduce TCP in this section.

Sockets

Network programming is implemented in Java using sockets. A socket describes one
end of the connection between two programs over the network. A socket consists
of an address that identifies the remote computer and a port for both the local and
remote computer. The port is assigned an integer value between 0 and 65,535 that is
used to identify which program should handle data received from the network. Two
applications may not bind to the same port. Typically, ports 0 to 1,024 are reserved for
use by well-known services implemented by your operating system.

The process of client/server communication is shown in Display 19.6. First, the
server waits for a connection by listening on a specific port. When a client connects to
this port, a new socket is created that identifies the remote computer, the remote port,
and the local port. A similar socket is created on the client. Once the sockets are created
on both the client and the server, data can be transmitted using streams in a manner
very similar to the way we implemented file I/O in Chapter 10.

Display 19.7 shows how to create a simple server that listens on port 7654 for a
connection. Once it receives a connection, a new socket is returned by the accept ()
method. From this socket, we create a Bufferedreader, just as if we were reading
from a text file described in Chapter 10. Data is transmitted to the socket using a
DataOutputStream, which is similar to a FileOutputStream. The serversocket

‘ | M19_SAVT0310_01_SE_C19.ndd 1098 @

2/2/12 1:10 PM | ‘

| T T ® (| |

Networking with Stream Sockets 1099

Display 19.6 ~ Client/Server Network Communication through Sockets

1. The server listens and waits for a connection on port 7654.

Server Computer

port 0
port 1

Server —»| port 7654

program

port 65535

2. The client connects to the server on port 7654. It uses a local port that is assigned
automatically, in this case, port 20314.

Server Computer Client Computer

port 0 port 0

port 1 port 1

Network .

@ Server —»| port 7654 port 20314 [€— Client @
program program

port 65535 port 65535
The server program can now The client program can now
communicate over a socket bound communicate over a socket bound
locally to port 7654 and remotely locally to port 20314 and remotely
to the client’s address at port 20314. to the server’s address at port 7654.

and socket classes are in the java.net package, while the Bufferedreader and
DataOutputStream classes are in the java.io package. Once the streams are created,
the server expects the client to send a name. The server waits for the name with a
call to readLine() on the BufferedReader object and then sends back the name
concatenated with the current date and time. Finally, the server closes the streams
and sockets.

Display 19.6 shows how to create a client that connects to our date and time server.
First, we create a socket with the name of the computer running the server along with
the corresponding port of 7654. If the server program and client program are running

localhost on the same computer, then you can use localhost as the name of the machine. Your
computer understands that any attempt to connect across a network to the machine
named localhost really corresponds to a connection with itself. Otherwise, the
hostname should be set to the name of the computer (e.g., my.server.com). After a
connection is made, the client creates stream objects, sends its name, waits for a reply,
and prints the reply.

‘ | M19_SAVT0310_01_SE_C19.indd 1099 @ 2/2112 1:10 PM| ‘

| T T ®

1100

CHAPTER 19 Java Never Ends

Display 19.7 Date and Time Server (part 1 of 2)

N oYUk W N

10
11
12

13
14
15
16
17

18
19
20
21

22
23
24
25
26
27
28

29
30
31
32
33
34
35

36
37
38

import
import
import
import
import
import
import

public

{

java.util.Date;
java.net.ServerSocket;
java.net.Socket;
java.lo.DataOutputStream;
java.ilo.BufferedReader;
java.io.InputStreamReader;
java.ilo.IOException;

class DateServer

public static void main(Stringl[] args)

{

‘ | M19_SAVT0310_01_SE_C19.indd 1100

Date now = new Date() ;

try

{

}

System.out .println("Waiting for a connection on port 7654.");
ServerSocket serverSock = new ServerSocket (7654) ;
Socket connectionSock = serverSock.accept () ;

BufferedReader clientInput = new BufferedReader (
new InputStreamReader (connectionSock.getInputStream())) ;
DataOutputStream clientOutput = new DataOutputStream(
connectionSock.getOutputStream()) ;

System.out .println ("Connection made, waiting for client " +
"to send their name.");

String clientText = clientInput.readLine() ;

String replyText = "Welcome, " + clientText +
", Today is " + now.toString() + "\n";

clientOutput.writeBytes (replyText) ;
System.out.println("Sent: " + replyText);

clientOutput.close () ;
clientInput.close() ;
connectionSock.close () ;
serverSock.close() ;

catch (IOException e)

{
}

System.out.println(e.getMessage()) ;

2/2/12 1:10 PM | ‘

Networking with Stream Sockets 1101

Display 19.7 Date and Time Server (part 2 of 2)

Sample Dialogue Output when the client program in Display 19.8 connects to the server program.

Waiting for a connection on port 7654.
Connection made, waiting for client to send their name.
Sent: Welcome, Dusty Rhodes, Today is Sun Nov 20 12:18:21 AKDT 2011

Display 19.8 Date and Time Client (part 1 of 2)

oo w N

14
15

16
17
18
19

20
21

22
23
24

25
26
27
28

import
import
import
import
import

public

{

java.net.Socket;
java.lo.DataOutputStream;
java.ilo.BufferedReader;
java.io.InputStreamReader;
java.ilo.IOException;

class DateClient

public static void main(String[] args)

{

‘ | M19_SAVT0310_01_SE_C19.indd 1101

{

localhost refers to the same, or local,

try machine that the client is running on.
Change this string to the appropriate

String hostname = "localhost"; hostname (e.g., my.server.com) if the
int port = 7654; server is running on a remote machine.

System.out .println ("Connecting to server on port " + port);

Socket connectionSock = new Socket (hostname, port) ;

BufferedReader serverInput = new BufferedReader (
new InputStreamReader (connectionSock.getInputStream())) ;
DataOutputStream serverOutput = new DataOutputStream(
connectionSock.getOutputStream()) ;

System.out.println ("Connection made, sending name.") ;
serverOutput .writeBytes ("Dusty Rhodes\n") ;

System.out .println ("Waiting for reply.");
String serverData = serverInput.readLine() ;
System.out .println ("Received: " + serverData);

serverOutput.close () ;

serverInput.close() ;
connectionSock.close () ;

(continued)

@ 2/2/12 1:10 PM | ‘

| T T ®

1102 CHAPTER19 Java Never Ends
Display 19.8 Date and Time Client (part 2 of 2)
29 catch (IOException e)
30 {
31 System.out .println(e.getMessage ()) ;
32 }
33 }
34
Sample Dialogue Output when client program connects to the server programin Display 19.7.
Connecting to server on port 7654
Connection made, sending name.
Waiting for reply.
Received: Welcome, Dusty Rhodes, Today is Fri Oct 13 03:03:21 AKDT 2011
Note that the socket and stream objects throw checked exceptions. This means that
their exceptions must be caught or declared in a throws block.
Sockets and Threading
If you run the program in Display 19.7, then you will notice that the server waits, ®
blocking or blocks, at the serversock.accept () call until a client connects to it. Both the
client and server also block at the readLine () call if data from the socket is not yet

‘ | M19_SAVT0310_01_SE_C19.indd 1102 @ 2/2112 1:10 PM| ‘

available. In a client with a GUI, you would notice this as a nonresponsive program
while it is waiting for data. For the server, this behavior makes it difficult to handle
connections with more than one client. After a connection is made with the first
client, the server will become nonresponsive to the client’s requests while it waits for a
second client.

The solution to this problem is to use threads. One thread will listen for new
connections while another thread handles an existing connection. Section 19.1
describes how to create threads and make a GUI program responsive. On the server,
the accept () call is typically placed in a loop and a new thread is created to handle
each client connection:

while (true)

{

Socket connectionSock = serverSock.accept();
ClientHandler handler = new ClientHandler (connectionSock) ;
Thread theThread = new Thread (handler) ;

theThread.start ();

}

In this code, clientHandler is a class that implements Runnable. The constructor
keeps a reference to the socket in an instance variable, and the run() method would
handle all communications. A complete implementation of a threaded server is left as
Programming Projects 19.7 and 19.8.

