
1

UDP Server

Application Layer 2-1

import java.io.*;

import java.net.*;

class UDPServer

{

 public static void main(String argv[]) throws Exception

 {

 String sentence;

 String capitalizedSentence;

 byte[] receiveData = new byte[1024];

 byte[] sendData = new byte[1024];

 DatagramSocket serverSocket = new DatagramSocket(9876);

 while (true) {

 DatagramPacket receivePacket = new DatagramPacket(

 receiveData, receiveData.length);

 serverSocket.receive(receivePacket);

 sentence = new String(receivePacket.getData());

 InetAddress IPAddress = receivePacket.getAddress();

 int port = receivePacket.getPort();

 capitalizedSentence = sentence.toUpperCase();

 sendData = capitalizedSentence.getBytes();

 DatagramPacket sendPacket = new DatagramPacket(

 sendData, sendData.length, IPAddress, port);

 serverSocket.send(sendPacket);

} } }

UDP Client
import java.io.*; import java.net.*;

import java.util.Scanner;

class UDPClient

{

 public static void main(String argv[]) throws Exception

 {

 Scanner kbd = new Scanner(System.in);

 String sentence;

 String modifiedSentence;

 DatagramSocket clientSocket = new DatagramSocket();

 InetAddress IPAddress = InetAddress.getByName("localhost");

 byte[] sendData = new byte[1024];

 byte[] receiveData = new byte[1024];

 System.out.println("Enter some text.");

 sentence = kbd.nextLine();

 sendData = sentence.getBytes();

 DatagramPacket sendPacket = new DatagramPacket(sendData,

 sendData.length,IPAddress, 9876);

 clientSocket.send(sendPacket);

 DatagramPacket receivePacket = new DatagramPacket(receiveData,

 receiveData.length);

 clientSocket.receive(receivePacket);

 modifiedSentence = new String(receivePacket.getData());

 System.out.println("From Server: " + modifiedSentence);

 clientSocket.close();

} }

2

Application Layer 2-3

FTP: the file transfer protocol

file transfer
FTP

server

FTP

user

interface

FTP

client

local file

system

remote file

system

user

at host

 transfer file to/from remote host
 client/server model

 client: side that initiates transfer (either to/from remote)

 server: remote host

 ftp: RFC 959
 ftp server: port 21

Application Layer 2-4

FTP: separate control, data connections

 FTP client contacts FTP server
at port 21, using TCP

 client authorized over control
connection

 client browses remote
directory, sends commands
over control connection

 when server receives file
transfer command, server
opens 2nd TCP data
connection (for file) to client

 after transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

 server opens another TCP
data connection to transfer
another file

 control connection: “out of
band”

 FTP server maintains
“state”: current directory,
earlier authentication

3

Application Layer 2-5

FTP commands, responses

sample commands:
 sent as ASCII text over

control channel

 USER username

 PASS password

 LIST return list of file in
current directory

 RETR filename
retrieves (gets) file

 STOR filename stores
(puts) file onto remote
host

sample return codes
 status code and phrase (as

in HTTP)

 331 Username OK,
password required

 125 data
connection
already open;
transfer starting

 425 Can’t open
data connection

 452 Error writing
file

Application Layer 2-6

Electronic mail

Three major components:
 user agents

 mail servers

 simple mail transfer
protocol: SMTP

User Agent
 a.k.a. “mail reader”
 composing, editing, reading

mail messages

 e.g., Outlook, Thunderbird,
iPhone mail client

 outgoing, incoming
messages stored on server

user mailbox

outgoing

message queue

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

4

Application Layer 2-7

Electronic mail: mail servers

mail servers:
 mailbox contains incoming

messages for user

 message queue of outgoing
(to be sent) mail messages

 SMTP protocol between
mail servers to send email
messages

 client: sending mail
server

 “server”: receiving mail
server

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

Application Layer 2-8

Electronic Mail: SMTP [RFC 2821]

 uses TCP to reliably transfer email message from
client to server, port 25

 direct transfer: sending server to receiving
server

 three phases of transfer
 handshaking (greeting)

 transfer of messages

 closure

 command/response interaction (like HTTP, FTP)
 commands: ASCII text

 response: status code and phrase

 messages must be in 7-bit ASCI

5

Application Layer 2-9

user

agent

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail

server

mail

server

1

2 3 4

5

6

Alice’s mail server Bob’s mail server

user

agent

Application Layer 2-10

Sample SMTP interaction

 S: 220 hamburger.edu

 C: HELO crepes.fr

 S: 250 Hello crepes.fr, pleased to meet you

 C: MAIL FROM: <alice@crepes.fr>

 S: 250 alice@crepes.fr... Sender ok

 C: RCPT TO: <bob@hamburger.edu>

 S: 250 bob@hamburger.edu ... Recipient ok

 C: DATA

 S: 354 Enter mail, end with "." on a line by itself

 C: Do you like ketchup?

 C: How about pickles?

 C: .

 S: 250 Message accepted for delivery

 C: QUIT

 S: 221 hamburger.edu closing connection

6

Application Layer 2-11

Try SMTP interaction for yourself:

 telnet servername 25

 see 220 reply from server

 enter HELO, MAIL FROM, RCPT TO, DATA, QUIT
commands

above lets you send email without using email client (reader)

Application Layer 2-12

SMTP: final words

 SMTP uses persistent
connections

 SMTP requires message
(header & body) to be in
7-bit ASCII

 SMTP server uses
CRLF.CRLF to
determine end of message

comparison with HTTP:

 HTTP: pull

 SMTP: push

 both have ASCII
command/response
interaction, status codes

 HTTP: each object
encapsulated in its own
response msg

 SMTP: multiple objects
sent in multipart msg

7

Application Layer 2-13

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

 header lines, e.g.,
 To:

 From:

 Subject:

different from SMTP MAIL
FROM, RCPT TO:
commands!

 Body: the “message”
 ASCII characters only

header

body

blank

line

Application Layer 2-14

Mail access protocols

 SMTP: delivery/storage to receiver’s server

 mail access protocol: retrieval from server

 POP: Post Office Protocol [RFC 1939]: authorization,
download

 IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on
server

 HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
 IMAP)

user

agent

user

agent

8

Application Layer 2-15

POP3 protocol

authorization phase
 client commands:

 user: declare username

 pass: password

 server responses

 +OK

 -ERR

transaction phase, client:
 list: list message numbers

 retr: retrieve message by
number

 dele: delete

 quit

 C: list
 S: 1 498

 S: 2 912

 S: .

 C: retr 1

 S: <message 1 contents>

 S: .

 C: dele 1

 C: retr 2

 S: <message 1 contents>

 S: .

 C: dele 2

 C: quit

 S: +OK POP3 server signing off

S: +OK POP3 server ready

C: user bob

S: +OK

C: pass hungry

S: +OK user successfully logged on

Application Layer 2-16

Chapter 2: outline

2.5 DNS

9

Application Layer 2-17

DNS: domain name system

people: many identifiers:

 SSN, name, passport #

Internet hosts, routers:

 IP address (32 bit) -
used for addressing
datagrams

 “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
 distributed database

implemented in hierarchy of
many name servers

 application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)

 note: core Internet function,
implemented as application-
layer protocol

 complexity at network’s
“edge”

Application Layer 2-18

DNS: services, structure

why not centralize DNS?
 single point of failure

 traffic volume

 distant centralized database

 maintenance

DNS services
 hostname to IP address

translation

 host aliasing
 canonical, alias names

 mail server aliasing

 load distribution

 replicated Web
servers: many IP
addresses correspond
to one name

A: doesn’t scale!

10

Application Layer 2-19

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers
amazon.com

DNS servers

pbs.org

DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:

 client queries root server to find com DNS server

 client queries .com DNS server to get amazon.com DNS server

 client queries amazon.com DNS server to get IP address for
www.amazon.com

… …

Application Layer 2-20

DNS: root name servers

 contacted by local name server that can not resolve name

 root name server:

 contacts authoritative name server if name mapping not known

 gets mapping

 returns mapping to local name server

 13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA

 (5 other sites)

b. USC-ISI Marina del Rey, CA

l. ICANN Los Angeles, CA
 (41 other sites)

e. NASA Mt View, CA

f. Internet Software C.

Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)

d. U Maryland College Park, MD

h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

11

Application Layer 2-21

TLD, authoritative servers

top-level domain (TLD) servers:
 responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp

 Network Solutions maintains servers for .com TLD

 Educause for .edu TLD

authoritative DNS servers:
 organization’s own DNS server(s), providing

authoritative hostname to IP mappings for organization’s
named hosts

 can be maintained by organization or service provider

Application Layer 2-22

Local DNS name server

 does not strictly belong to hierarchy

 each ISP (residential ISP, company, university) has
one
 also called “default name server”

 when host makes DNS query, query is sent to its
local DNS server
 has local cache of recent name-to-address translation

pairs (but may be out of date!)

 acts as proxy, forwards query into hierarchy

12

Application Layer 2-23

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7
8

TLD DNS server

DNS name
resolution example

 host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

Application Layer 2-24

4 5

6

3

recursive query:
 puts burden of name

resolution on

contacted name

server

 heavy load at upper

levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server

dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

13

Application Layer 2-25

DNS: caching, updating records

 once (any) name server learns mapping, it caches
mapping
 cache entries timeout (disappear) after some time (TTL)

 TLD servers typically cached in local name servers

• thus root name servers not often visited

 cached entries may be out-of-date (best effort
name-to-address translation!)
 if name host changes IP address, may not be known

Internet-wide until all TTLs expire

 update/notify mechanisms proposed IETF standard
 RFC 2136

Application Layer 2-26

DNS records

DNS: distributed db storing resource records (RR)

type=NS
 name is domain (e.g.,

foo.com)

 value is hostname of
authoritative name
server for this domain

RR format: (name, value, type, ttl)

type=A
 name is hostname

 value is IP address

type=CNAME
 name is alias name for some

“canonical” (the real) name

 www.ibm.com is really

 servereast.backup2.ibm.com

 value is canonical name

 type=MX
 value is name of mailserver

associated with name

14

Explore DNS

 Use nslookup to find
IP addresses

 Use whois to find
domain registration

Application Layer 2-27

Attacking DNS

DDoS attacks

 Bombard root servers
with traffic
 Not successful to date

 Traffic Filtering

 Local DNS servers
cache IPs of TLD
servers, allowing root
server bypass

 Bombard TLD servers
 Potentially more

dangerous

Redirect attacks

 Man-in-middle
 Intercept queries

 DNS poisoning
 Send bogus replies to

DNS server, which
caches

Exploit DNS for DDoS

 Send queries with
spoofed source
address: target IP

 Requires amplification
Application Layer 2-28

15

Application Layer 2-29

Chapter 2: outline

2.6 P2P applications

Application Layer 2-30

Pure P2P architecture

 no always-on server

 arbitrary end systems
directly communicate

 peers are intermittently
connected and change IP
addresses

examples:
 file distribution

(BitTorrent)

 Streaming (KanKan)

 VoIP (Skype)

16

Application Layer 2-31

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
 peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant

 bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacity u2 d2

u1 d1

di

ui

Application Layer 2-32

File distribution time: client-server

 server transmission: must
sequentially send (upload) N
file copies:

 time to send one copy: F/us

 time to send N copies: NF/us

increases linearly in N

time to distribute F

to N clients using

client-server approach
 Dc-s > max{NF/us,,F/dmin}

 client: each client must download file copy
 dmin = min client download rate, i.e. slowest

 min client download time: F/dmin

us

network

di

ui

F

17

Application Layer 2-33

File distribution time: P2P

 server transmission: must
upload at least one copy

 time to send one copy: F/us

time to distribute F

to N clients using

P2P approach

us

network

di

ui

F

 DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

 client: each client must
download file copy
 min client download time: F/dmin

 clients: as aggregate must download NF bits

 max upload rate (limiting max download rate) is us + Sui

… but so does this, as each peer brings service capacity

increases linearly in N …

Application Layer 2-34

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u

m
 D

is
tr

ib
u

ti
o

n
 T

im
e P2P

Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

18

Application Layer 2-35

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

 file divided into 256Kb chunks

 peers in torrent send/receive file chunks

… obtains list

of peers from tracker
… and begins exchanging

file chunks with peers in torrent

Application Layer 2-36

 peer joining torrent:

 has no chunks, but will
accumulate them over time
from other peers

 registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

P2P file distribution: BitTorrent

 while downloading, peer uploads chunks to other peers

 peer may change peers with whom it exchanges chunks

 churn: peers may come and go

 once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

19

Application Layer 2-37

BitTorrent: requesting, sending file chunks

requesting chunks:
 at any given time, different

peers have different subsets
of file chunks

 periodically, Alice asks each
peer for list of chunks that
they have

 Alice requests missing
chunks from peers, rarest
first

sending chunks: tit-for-tat
 Alice sends chunks to those

four peers currently sending her
chunks at highest rate
 other peers are choked by Alice

(do not receive chunks from her)

 re-evaluate top 4 every10 secs

 every 30 secs: randomly select
another peer, starts sending
chunks
 “optimistically unchoke” this peer

 newly chosen peer may join top 4

Application Layer 2-38

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better

trading partners, get file faster !

20

Distributed Hash Table (DHT)

DHT: a distributed P2P database

 database has (key, value) pairs; examples:

 key: ss number; value: human name

 key: movie title; value: IP address

Distribute the (key, value) pairs over the

(millions of peers)

 a peer queries DHT with key

 DHT returns values that match the key

 peers can also insert (key, value) pairs

Application 2-39

Q: how to assign keys to peers?

 central issue:

 assigning (key, value) pairs to peers.

 basic idea:

 convert each key to an integer

 Assign integer to each peer

 put (key,value) pair in the peer that is closest

to the key

Application 2-40

21

DHT identifiers

 assign integer identifier to each peer in range

[0,2n-1] for some n.

 each identifier represented by n bits.

 require each key to be an integer in same range

 to get integer key, hash original key

 e.g., key = hash(“Led Zeppelin IV”)

 this is why its is referred to as a distributed “hash”

table

Application 2-41

Assign keys to peers

 rule: assign key to the peer that has the

closest ID.

 convention in lecture: closest is the

immediate successor of the key.

 e.g., n=4; peers: 1,3,4,5,8,10,12,14;

 key = 13, then successor peer = 14

 key = 15, then successor peer = 1

Application 2-42

22

1

3

4

5

8
10

12

15

Circular DHT (1)

 each peer only aware of immediate successor and

predecessor.

 “overlay network”
Application 2-43

0001

0011

0100

0101

1000
1010

1100

1111

Who’s responsible

for key 1110 ?
I am

O(N) messages

on average to resolve

query, when there

are N peers

1110

1110

1110

1110

1110

1110

Define closest

as closest

successor

Application 2-44

Circular DHT (1)

23

Circular DHT with shortcuts

 each peer keeps track of IP addresses of predecessor,
successor, short cuts.

 reduced from 6 to 2 messages.

 possible to design shortcuts so O(log N) neighbors, O(log N)
messages in query

1

3

4

5

8
10

12

15

Who’s responsible

for key 1110?

Application 2-45

Peer churn

example: peer 5 abruptly leaves

peer 4 detects peer 5 departure; makes 8 its immediate
successor; asks 8 who its immediate successor is; makes
8’s immediate successor its second successor.

what if peer 13 wants to join?

1

3

4

5

8
10

12

15

handling peer churn:

peers may come and go (churn)

each peer knows address of its
two successors

each peer periodically pings its
two successors to check aliveness

if immediate successor leaves,
choose next successor as new
immediate successor

Application 2-46

24

Application Layer 2-47

Chapter 2: summary

 application architectures

 client-server

 P2P

 application service
requirements:

 reliability, bandwidth, delay

 Internet transport service
model

 connection-oriented,
reliable: TCP

 unreliable, datagrams: UDP

our study of network apps now complete!

 specific protocols:

 HTTP

 FTP

 SMTP

 DNS

 P2P: BitTorrent, DHT

 socket programming: TCP,

UDP sockets

Application Layer 2-48

 typical request/reply
message exchange:

 client requests info or
service

 server responds with
data, status code

 message formats:

 headers: fields giving
info about data

 data: info being
communicated

important themes:

 control vs. data msgs

 in-band, out-of-band

 centralized vs. decentralized

 stateless vs. stateful

 reliable vs. unreliable msg

transfer

 “complexity at network

edge”

Chapter 2: summary

most importantly: learned about protocols!

