
1

Introduction to Artificial Life

and Cellular Automata

CS405

Cellular Automata

• A cellular automata is a family of simple,

finite-state machines that exhibit

interesting, emergent behaviors through

their interactions in a population

2

The famous BOIDS model shows

how flocking behavior can emerge

from a collection of agents

following a few simple rules.

Emergent Behavior

Game of Life

• The best known CA is John Horton Conway's
"Game of Life".
– Invented 1970 in Cambridge.

• Objective: To make a 'game' as unpredictable as
possible with the simplest possible rules.

• 2-dimensional grid of squares on a (possibly
infinite) plane. Each square can be blank (white)
or occupied (black).

Moore

Neighborhood
von Neumann

Neighborhood

3

Game of Life

• The grid is populated with some initial dots

• Every time tick all squares are updated

simultaneously, according to a few simple
rules, depending on the local situation.

– For any one cell, the cell changes based on
the current values of itself and 8 immediate
neighbors

Game of Life Update Rules

• Stay the same if you have exactly two “On”
(black) neighbors

• Switch or stay “On” (black) if you have exactly
three “On” neighbors

• Otherwise switch to “Off” (white) on the next
time step

Alternative (equivalent) formulation of Game of Life

rules:

0,1 nbrs = starve, die 2 nbrs = stay alive

3 nbrs = new birth 4+ nbrs = stifle, die

4

Glider

Sequences

5

More

Sequence leading to

Blinkers

Clock

Barber’s pole

A Glider Gun

6

More Formal Cellular Automaton

• A set I called the Input Alphabet
• A set S of states that the automaton can be in
• A designated state s0 , the initial state

• A next state function: N: S × I → S, that assigns
a next state to each ordered pair consisting of a
current state and a current input

• A lattice (e.g. grid)
• of finite automata (e.g. cells)
• each in a finite state (e.g. white or black)

Game of Life - implications

Typical Artificial Life, or Non-Symbolic AI,

computational paradigm:

• bottom-up

• parallel

• locally-determined

Complex behaviour from (... emergent from ...)

simple rules.

Gliders, blocks, traffic lights, blinkers, glider-guns,

eaters, puffer-trains ...

7

Game of Life as a Computer ?

Higher-level units in GoL can in principle be

assembled into complex 'machines' -- even into a full

computer, or Universal Turing Machine.

'Computer memory' held as 'bits' denoted by 'blocks‘

laid out in a row stretching out as a potentially infinite

'tape'. Bits can be turned on/off by well-aimed gliders.

This is a Turing Machine implemented in Conway's Game of Life.

http://rendell-attic.org/gol/tm.htm

8

Self-Reproducing CA’s

• von Neumann saw CAs as a good framework for
studying the necessary and sufficient conditions
for self-replication of structures.

• von Neumann’s approach: self-representation of
abstract structures, in the sense that gliders are
abstract structures.

• His CA had 29 possible states for each cell
(compare with Game of Life 2, black and white)
and his minimum self-rep structure had some
200,000 cells.

Self-Representation and DNA

• This was early 1950s, pre-discovery of DNA, but
von Neumann's machine had clear analogue of
DNA which is:

– Interpreted to determine pattern of 'body‘

– Contains instructions to copy itself directly

• Simplest general logical form of reproduction (?)

• How simple can you get?

9

One-Dimensional CA’s

• Game of Life is 2-D. Many simpler 1-D CAs have
been studied

• For a given rule-set, and a given starting setup,
the deterministic evolution of a CA with one state
(on/off) can be pictured as successive lines of
colored squares, successive lines under each
other

Wolfram’s CA classes 1,2

From observation, initially of 1-D CA spacetime

patterns, Wolfram noticed 4 different classes of

rule-sets. Any particular rule-set falls into one of

these:-:

CLASS 1: From any starting setup, pattern

converges to all blank -- fixed attractor

CLASS 2: From any start, goes to a limit cycle,

repeats same sequence of patterns for ever. --

cyclic attractors

10

Wolfram’s CA classes 3,4

CLASS 3: Turbulent mess, chaos, no patterns to be

seen.

CLASS 4: From any start, patterns emerge and

continue continue without repetition for a very long

time (could only be 'forever' in infinite grid)

Classes 1 and 2 are boring, Class 3 is messy,

Class 4 is 'At the Edge of Chaos' - at the transition

between order and chaos -- where Game of Life is!.

Wolfram Rule 110

Proven to be Turing Complete - Rich enough for universal computation

interesting result because Rule 110 is an extremely simple system, simple

enough to suggest that naturally occurring physical systems may also be

capable of universality

11

Rule 110 Example

• Requires potentially infinite dimensions for

general computation

A-Life Applications?

• Tool for mathematically studying

emergence from simple, inanimate

components

– “atoms” of an a-life system are defined and
physical interactions emerge

• Modeling biological entities, chemistry,

pharmacology

– Chemical multi-cellular morphogenesis

12

Chemical Morphogenesis Project -
2004

• Three subteams

– Computer Science: Dr.

Mock, Nick Armstrong, and

Heather Koyuk

– Biology: Dr. Gerry Davis

– Chemistry: Dr. Jerzy

Maselko, Heidi Geri

• Three subprojects

– Implement a 3-D simulation

and theoretical model

– Relate the chemical system

to biological systems

– Implement the chemical

system in the laboratory

The Project

• Create a computer simulation capable of
modeling multi-cellular chemical and biological
growth

• Should model biological and chemical systems
as accurately as possible

– Cells as spherical objects

– Cells bud or grow in spherical (non-discrete)

directions

– Use both context-free and context-sensitive growth

• Easy to write a program that ‘simulates’ growth

• Harder to use grammars to create a specific unique pattern

13

The Agents

• 3D spheres, uniform radii

• Magnitude (state)

• Spherical growth vectors

• Current model:

– Sessile, rigid

– Die/become dormant after

budding

• Not limited to the above!

The Rules and Actions

• Rules comprise a grammar

• Context-free
– Unaware of neighbors; behavior based on state

• Context-sensitive
– Behavior based on state & state of neighbors

• Actions:
– Implemented: Budding

– Working on: Cell Division

– Others: Motility, growth, non-uniform shapes, etc.

• Dynamic rule creation (via user interface)

14

Dynamic Rules Creation

Research Overview

• Morphogenesis

– Lots of plant

morphogenesis

research: L-
systems, etc.

– Chemical

morphogenesis:

Mostly chemical
reaction/diffusion

Image source: Fowler, D., and Prusinkiewicz, P. “Maltese Cross.”

1993. Visual Models of Morphogenesis/ Algorithmic Botany at the

University of Calgary. 4/14/05.

<http://algorithmicbotany.org/vmm-deluxe/Section-07.html>.

15

Research Overview
• Cellular Automata

– Begin with grid of cells

– Usually 1-D, some 2-D

– Binary/discrete state
variables (‘on’ or ‘off’)

– Cells change state
based on their current
state and state of
immediate neighbors

• Our cells:
– Do not fill grid

– 3-Dimensional and can
grow in any direction

– Continuous state variables
(not discrete) Image source: Fowler, D., and Prusinkiewicz, P. “Maltese Cross.”

1993. Visual Models of Morphogenesis/ Algorithmic Botany at the

University of Calgary. 4/14/05.

<http://algorithmicbotany.org/vmm-deluxe/Section-07.html>.

Cellular Automata

• Our cells are capable of everything a cellular

automaton is, and more!

Wolfram’s Rule 110

16

Context-Free

Context-Sensitive

17

Problems/Questions

• Infinite search space for
possible rules

– How to narrow down and find
interesting ones?

• Dynamic rule specification

– Entails specifying, executing a
grammar during run-time

• Backward problem

– For a given macrostructure,
how to define a rule set to
produce that structure?

• Expand code functionality

– Budding/Cell Division, Cell
Growth/L-Systems, Motility,
Pliability

Future Directions/Answers

• Create a language for specifying rules

• Use genetic algorithms to find interesting rules, and to
solve backward problem

• Examine division/budding, motility, cell growth, L-
Systems, and pliability separately and in great depth

• Keep trying to reproduce basic biological structures (e.g.
developing embryo) in model and in lab

18

Conclusion

• This project has widespread implications

– Biology

– Chemistry

– Computer science

– Complexity

• We’ve laid the groundwork

• But we’ve only scratched the surface!

