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Introduction to Artificial Life 

and Cellular Automata

CS405

Cellular Automata

• A cellular automata is a family of simple, 

finite-state machines that exhibit 

interesting, emergent behaviors through 

their interactions in a population
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The famous BOIDS model shows 

how flocking behavior can emerge 

from a collection of agents 

following a few simple rules.

Emergent Behavior

Game of Life

• The best known CA is John Horton Conway's 
"Game of  Life".  
– Invented 1970 in Cambridge.

• Objective: To make a 'game' as unpredictable as  
possible with the simplest possible rules.

• 2-dimensional grid of squares on a (possibly 
infinite) plane. Each square can be blank (white) 
or occupied (black).

Moore

Neighborhood
von Neumann

Neighborhood
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Game of Life

• The grid is populated with some initial dots

• Every time tick all squares are updated 

simultaneously, according to a few simple 
rules, depending on the local situation.

– For any one cell, the cell changes based on 
the current values of itself and 8 immediate 
neighbors

Game of Life Update Rules

• Stay the same if you have exactly two “On”
(black) neighbors

• Switch or stay “On” (black) if you have exactly 
three “On” neighbors

• Otherwise switch to “Off” (white) on the next 
time step

Alternative (equivalent) formulation of Game of Life 

rules:

0,1 nbrs = starve, die       2 nbrs = stay alive

3 nbrs = new birth         4+ nbrs = stifle, die
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Glider

Sequences
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More

Sequence leading to 

Blinkers

Clock

Barber’s pole

A Glider Gun
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More Formal Cellular Automaton

• A set I called the Input Alphabet
• A set S of states that the automaton can be in
• A designated state s0 , the initial state

• A next state function:  N: S × I → S, that assigns 
a next state to each ordered pair consisting of a 
current state and a current input

• A lattice  (e.g. grid)
• of finite automata (e.g. cells)
• each in a finite state (e.g. white or black)

Game of Life - implications

Typical Artificial Life, or Non-Symbolic AI, 

computational paradigm:

• bottom-up

• parallel

• locally-determined

Complex behaviour from (... emergent from ...) 

simple rules.

Gliders, blocks, traffic lights, blinkers,  glider-guns, 

eaters, puffer-trains ...
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Game of Life as a Computer ?

Higher-level units in GoL can in principle be 

assembled  into complex 'machines'  -- even into a full 

computer, or Universal Turing Machine.

'Computer memory' held as 'bits' denoted by 'blocks‘

laid out in a row  stretching out as a potentially infinite 

'tape'. Bits can be turned on/off by well-aimed gliders.

This is a Turing Machine implemented in Conway's Game of Life.

http://rendell-attic.org/gol/tm.htm
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Self-Reproducing CA’s

• von Neumann saw CAs as a good framework for 
studying the necessary and sufficient conditions 
for self-replication of structures.

• von Neumann’s approach: self-representation of 
abstract structures, in the sense that gliders are 
abstract structures.

• His CA had 29 possible states for each cell  
(compare with Game of Life 2, black and white) 
and his minimum self-rep structure had some 
200,000 cells.

Self-Representation and DNA

• This was early 1950s, pre-discovery of DNA, but 
von Neumann's machine had clear analogue of 
DNA which is:

– Interpreted to determine pattern of 'body‘

– Contains instructions to copy itself directly

• Simplest general logical form of reproduction (?)

• How simple can you get?
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One-Dimensional CA’s

• Game of Life is 2-D. Many simpler 1-D CAs have 
been studied

• For a given rule-set, and a given starting setup, 
the deterministic evolution of a CA with one state 
(on/off) can be pictured as successive lines of 
colored squares, successive lines under each 
other

Wolfram’s CA classes 1,2

From observation, initially of 1-D CA spacetime

patterns, Wolfram noticed 4 different classes of 

rule-sets. Any particular rule-set falls into one of 

these:-:

CLASS 1: From any starting setup, pattern  

converges to all blank -- fixed attractor

CLASS 2: From any start, goes to a limit cycle, 

repeats same  sequence of patterns for ever. --

cyclic attractors
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Wolfram’s CA classes 3,4

CLASS 3: Turbulent mess, chaos, no patterns to be 

seen.

CLASS 4: From any start, patterns emerge and 

continue continue without repetition for a very long

time (could only be 'forever' in infinite grid)

Classes 1 and 2 are boring, Class 3 is messy, 

Class 4 is 'At the Edge of Chaos' - at the transition

between order and chaos -- where Game of Life is!.

Wolfram Rule 110

Proven to be Turing Complete - Rich enough for universal computation

interesting result because Rule 110 is an extremely simple system, simple 

enough to suggest that naturally occurring physical systems may also be 

capable of universality
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Rule 110 Example

• Requires potentially infinite dimensions for 

general computation

A-Life Applications?

• Tool for mathematically studying 

emergence from simple, inanimate 

components

– “atoms” of an a-life system are defined and 
physical interactions emerge

• Modeling biological entities, chemistry, 

pharmacology

– Chemical multi-cellular morphogenesis
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Chemical Morphogenesis Project -
2004

• Three subteams

– Computer Science: Dr. 

Mock, Nick Armstrong, and 

Heather Koyuk

– Biology: Dr. Gerry Davis

– Chemistry: Dr. Jerzy 

Maselko, Heidi Geri

• Three subprojects

– Implement a 3-D simulation 

and theoretical model

– Relate the chemical system 

to biological systems

– Implement the chemical 

system in the laboratory

The Project

• Create a computer simulation capable of 
modeling multi-cellular chemical and biological 
growth

• Should model biological and chemical systems 
as accurately as possible

– Cells as spherical objects

– Cells bud or grow in spherical (non-discrete) 

directions

– Use both context-free and context-sensitive growth

• Easy to write a program that ‘simulates’ growth

• Harder to use grammars to create a specific unique pattern
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The Agents

• 3D spheres, uniform radii

• Magnitude (state)

• Spherical growth vectors

• Current model:

– Sessile, rigid

– Die/become dormant after 

budding

• Not limited to the above!

The Rules and Actions

• Rules comprise a grammar

• Context-free
– Unaware of neighbors; behavior based on state

• Context-sensitive
– Behavior based on state & state of neighbors

• Actions:
– Implemented: Budding

– Working on: Cell Division

– Others: Motility, growth, non-uniform shapes, etc.

• Dynamic rule creation (via user interface)



14

Dynamic Rules Creation

Research Overview

• Morphogenesis

– Lots of plant 

morphogenesis 

research:   L-
systems, etc.

– Chemical 

morphogenesis: 

Mostly chemical 
reaction/diffusion

Image source: Fowler, D., and Prusinkiewicz, P. “Maltese Cross.”

1993. Visual Models of Morphogenesis/ Algorithmic Botany at the 

University of Calgary. 4/14/05. 

<http://algorithmicbotany.org/vmm-deluxe/Section-07.html>.
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Research Overview
• Cellular Automata

– Begin with grid of cells

– Usually 1-D, some 2-D

– Binary/discrete state 
variables (‘on’ or ‘off’)

– Cells change state 
based on their current 
state and state of 
immediate neighbors

• Our cells:
– Do not fill grid

– 3-Dimensional and can 
grow in any direction

– Continuous state variables 
(not discrete) Image source: Fowler, D., and Prusinkiewicz, P. “Maltese Cross.”

1993. Visual Models of Morphogenesis/ Algorithmic Botany at the 

University of Calgary. 4/14/05. 

<http://algorithmicbotany.org/vmm-deluxe/Section-07.html>.

Cellular Automata

• Our cells are capable of everything a cellular 

automaton is, and more!

Wolfram’s Rule 110
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Context-Free

Context-Sensitive
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Problems/Questions

• Infinite search space for 
possible rules

– How to narrow down and find 
interesting ones?

• Dynamic rule specification 

– Entails specifying, executing a 
grammar during run-time

• Backward problem

– For a given macrostructure, 
how to define a rule set to 
produce that structure?

• Expand code functionality

– Budding/Cell Division, Cell 
Growth/L-Systems, Motility, 
Pliability

Future Directions/Answers

• Create a language for specifying rules

• Use genetic algorithms to find interesting rules, and to 
solve backward problem

• Examine division/budding, motility, cell growth, L-
Systems, and pliability separately and in great depth

• Keep trying to reproduce basic biological structures (e.g. 
developing embryo) in model and in lab
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Conclusion

• This project has widespread implications

– Biology

– Chemistry

– Computer science

– Complexity

• We’ve laid the groundwork

• But we’ve only scratched the surface!


