
Decision Trees

One disadvantage of many classification techniques is that the classification process is

difficult to understand. For a nearest neighbor or bayesian classifier, comparing dozens

or hundreds of features determines the final class. A user that wants to know why

sometime was classified the way it was is forced to examine these same dozens or

hundreds of features. Similarly, mathematical classification techniques are often difficult

for humans to understand.

However, humans do easily understand and accept decision rules. These are rules in the

format of “If X is true and Y is false, then conclude class 1.” Typically, continuous

variables are split up into a range, so that something like age could be checked through “If

age>60 and heart attack=true then…”.

For decision trees we’ll try to build up a set of conjunctive decision rules. In this format,

we only have AND’s within each rule, but each rule exists within an IF-THEN-ELSE

structure. For example, the following set of rules solves the XOR problem:

 If x=0 then

 If y=0 then class=0

 Else class = 1

 Else if x=1 then

 If y=0 then class=1

 Else class = 0

Note that the order that the rules are executed is important. Also, the rules cover all of

the classes; this can make a large decision tree difficult to understand.

Graphically, decision trees can be interpreted as drawing rectangles in the decision space.

The degree to which we can effectively draw the rectangles determines the classification

accuracy.

Here is an example of a binary decision tree. A decision tree consists of nodes for the

current feature to examine, and branches for the true/false result of comparing that feature

Class 1

Class 0

Class 0

to a test case. A terminal node denotes the class. It is convention to have the false branch

on the left and the true branch right.

When a new case is presented, we check to see if X is true or false. If X is false, we go to

the left and conclude that the case is C1. If X is true, we move to the right and now test

Y. If Y is false, we conclude C2. If Y is true, we conclude C1. In this example, two

rules cover C1 while one rule covers C2.

Decision trees are simple to apply; however they are more complicated to build. We

would like to find the smallest tree that perfectly classifies our training data. However,

we often have to settle for less. It is easy to find a tree that will cover our sample without

any errors, but more difficult to find a tree that performs well on test data. This means

that you shouldn’t be too impressed with yourself if the error on the training data is zero;

the error on the test set may be much worse (nearest neighbor after all gets 0 training

error).

Building The Tree

To build our tree, the idea is very simple. Start with some feature to test, say X. For now

let’s put off until later how we decided to pick X. Now, split up the set of cases into two

sets, one where X is true and the other where X is false. If any of these sets contains

cases entirely from one class, then make that branch a terminal node labeled with that

class. Otherwise, repeat the process with the newly formed set(s). As an alternate

method, nodes may become terminal when the size is below some threshold (say, 5), in

which case we just assign that node to be the most prevalent class. This technique is

necessary if we reach a point where there is no discriminating feature to separate the

classes.

Ideally we would like to find a small tree; this will give us rules that are easy to

understand and the performance will actually be better (more on this later). To do this,

we want to split based upon the most predictive features first.

To determine the most predictive feature, a heuristic search is employed. This heuristic

attempts to reduce the degree of randomness, or “impurity” of the current feature. We’ll

f

f

t

t

C1

C2 C1

Y

X

apply the heuristic for all our feature tests, looking for the best one. For example, a

feature that splits the data into two sets, where both sets have a 50% mixture of cases in

C1 and C2, then the impurity or randomness is high. However, if we find a feature that

splits the data into two sets where one set is 100% C1 and the other set is 100% C2 the

the impurity or randomness is 0. We want to minimize the impurity to find the right

feature to select.

A common heuristic to use is the entropy function. The entropy is defined as:

The entropy of a particular state is the negative sum over all the classes of the probability

of each class multiplied by the log of the probability. For example, let’s say that we have:

2 classes, C1 and C2

100 cases

50 cases are in each class

Thus the probability of each class, P1 and P2 are 0.5.

 The entropy of this node = -[(0.5)(lg 0.5) + (0.5)(lg 0.5)] = 1

Our algorithm will pick the feature or test that reduces the entropy the greatest. This can

be achieved by maximizing the following equation:

The probabilities of branching left or right are simply the percentage of cases in node N

that branch left or right. For all of our feature tests, we would calculate Delta-Entropy and

pick the feature that has the greatest change in entropy.

For example, let’s say that we are at a node with an entropy of 1 as calculated above. One

feature test may result in 50% of the cases going left and 50% going right. Of the 50%

going left, all are in C1. This means the entropy of Node(Left) = 0. Similarly, of the 50%

going right, all are in C2. This means the entropy of Node(Right)=0. The change in

entropy is then 1 if we selected this feature:

∑−=
c

cc ppnentropy 2log)(

)()()()(rightrightleftleft nentropypnentropypnentropynentropy −−=∆

Feature B

100 cases

F T

50 cases C1 50 cases C2

E=-[(1)*lg(1) + (0)*lg(0)

= 0 (actually undefined at lg(0))

E=-[(0)*lg(0) + (1)*lg(1)

= 0

10)5.0(0)5.0(1 =−−=∆entropy

If we tried another feature it might result in a less clear separation:

Note that there are many other heuristic functions in use; the gini function, LaPlace

heuristic, and statistical measures have also been proposed.

Shrinking The Tree

Decision trees to seem to operate according to Ockham’s Razor, which says that the most

likely hypothesis tends to be the simplest one that is consistent with all observations. We

see this show up with large trees vs. small trees. Smaller trees that are consistent with the

data tend to perform better than the large trees.

 # of Terminals vs. Error Rates (for Iris Data problem)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 7 9

Apparent Error

True Error

Feature A

100 cases

F T

10 cases C1

20 cases C2

50 cases C1

20 cases C2

E=-[(1/3)*lg(1/3) + (2/3)*lg(2/3)

= 0.92

E=-[(5/7)*lg(5/7) + (2/7)*lg(2/7)

= 0.86

122.086.0)7.0(92.0)3.0(1 =−−=∆entropy

In the graph above, the apparent error is the error rate on the training examples. Initially,

as the number of nodes in the tree is small, it is considerably lower than the true error

rate. As we increase the tree size to 3, the apparent error and the true error are smallest.

But then as we increase past three, the true error actually increases, while our apparent

error decreases.

We would actually do better with a tree of size 3 than a tree of size 9 (the tree that gives

us 0 error on the training examples). How do we find the subtree that yields the best

performance?

The most straightforward method is to prune branches off the decision tree. Working

backward from the bottom of an induced tree, the subtree starting at each nonterminal

node is examined. If the error rate on the test cases improves by pruning it, then the

subtree is removed. Although this technique has the subtle flaw of “indirectly training on

the test cases” it performs well on large samples (say >1000 test cases).

There are several other methods to pruning trees; one technique involves lookahead

during tree generation. Others involve heuristics to determine which branch to prune or

using cross-validation to get a better estimate on good prunes.

The decision tree algorithm presented here is the basis for an algorithm named ID3. Ross

Quinlan designed the use of the entropy function in 1979. More recent decision tree

algorithms include C4.5 and C5.0, a commercial product.

Web demo:

http://www.cs.ualberta.ca/~aixplore/learning/DecisionTrees/

Rule Induction – Decision Lists

Decision trees have become one of the “standard” algorithms for machine learning in the

AI community. However, the rules produced by decision trees are not only ordered (we

can’t jump in the middle of the tree to start the evaluation) but cover all classes. For large

trees, these rules can still be extremely difficult for people to understand.

An easier form to understand is a direct set of rules, in disjunctive normal form:

1. if X then C1

2. if X and Y then C2

3. if NOT X and Z and Y then C3

4. if B then C2

In DNF, we have only AND’s within each rule, but an OR of all rules.

Although relaxing the mutual exclusivity requirement of decision trees appears minor,

developing a learning system for this representation is actually much more difficult. One

immediate problem that arises is what to do if two rules fire for the same input, but

predict different classes. The common procedure is to predict the most common class in

this case. In general, we have problems if we just OR together all of our rules.

The problem with OR’ing together rules is that, surprisingly, we might end up lowering

our performance! Consider if you have two rules and 1000 cases. Rule 1 is activated

(covers) 100 cases, and is correct on 90 of them. Rule 2 also covers 100 cases, and it is

correct on 90 of them. What happens when we OR these rules together? In the best case,

the 90 correct cases are different, but the incorrect cases are identical. The accuracy is

now (90+90) / (90 + 90 + 10) = 0.95. However, in the worst case the two rules are

correct on the SAME cases but wrong on different cases. The combined classifier is now

90 / (90+10+10) = 0.82.

The end result is that we need to be careful inducing the rules, and that in some cases

decision trees may be a better way to go.

C%2 Induction Algorithm

CN2 is one unordered rule induction algorithm designed by Peter Clark. There are many

other algorithms; all operate under the same general principles. A somewhat simplified

version is presented here.

The idea of CN2 and other rule induction algorithms is to search the space of decision

rules from the general to the specific. We’ll employ a beam search to determine what

rules to generate; this search space is huge. If we only have 3 features, X, Y, and Z, then

we could generate the following possible rules:

 If X then…

 If X and Y then…

 If X and Y and Z then…

 If X and Z then …

 If Y then …

 If Y and Z then …

 If Z then…

The number of rules grows exponentially, 2
n
-1. There are even more rules if we consider

NOT X, NOT Y, etc. With features that are typically in the tens or hundreds, search

through this space can be extremely difficult. Essentially we will be searching through

this space of possible rules for the best rule on the training data.

There are three procedures in the algorithm:

CN2Unordered(allexamples, allclasses)

 Ruleset � {}

 For each class in allclasses

 Generate rules by CN2ForOneClass(allexamples, class)

 Add rules to ruleset

 Return ruleset

CN2ForOneClass(examples, class)

 Rules � {}

 Repeat

 Bestcond � FindBestCondition(examples, class)

 If bestcond <> null then

 Add the rule “IF bestcond THEN PREDICT class”

 Remove from examples all cases in class covered by bestcond

 Until bestcond = null

 Return rules

In the decision tree algorithm, we essentially removed all examples covered by bestcond

whether or not they were in a particular class. In the rule induction algorithm, it is

important that we keep negative examples of the rule around so that future rules stand out

from the negatives. We must remove the positive examples to prevent us from finding

the same rule again. The task remains to implement the FindBestCond routine:

FindBestCondition(examples, class)

 MGC � true ‘ most general condition

 Star � MGC

 Newstar � {}

 Bestcond � null

 While Star is not empty (or loopcount < MAXCONJUNCTS)

 For each rule R in Star

 For each possible feature F

 R’ � specialization of Rule formed by adding F as an

 Extra conjunct to Rule (i.e. Rule’ = Rule AND F)

 Removing null conditions (i.e. A AND NOT A)

 Removing redundancies (i.e. A AND A)

 And previously generated rules.

 If EntropyTest(R’,class) better than

EntropyTest(Bestcond, class)

 Bestcond � R’

 Add R’ to Newstar

 If size(NewStar) > MAXRULESIZE then

 Remove worst in Newstar

until Size=MAXRULESIZE

 Star � Newstar

 Return Bestcond

Initially, FindBestCondition will start with Star containing only the default “true” rule. To

this we add specializations by testing the rules with one feature. For example if our

features are X, Y and Z, then on the first pass we would generate “IF X then Class”, “IF Y

then Class” and “IF Z then Class”. All of these rules would be tested to see which has the

lower entropy (i.e. performance on the training set; other metrics can also be used, such as

the error rate using this rule).

Next, we keep track of the best rule so far and only remember the MAXRULESIZE best

rules. If MAXRULESIZE = 2, then we might only keep the rules “IF X then Class” and

“IF Y then Class”. By limiting the rule size, we enforce a narrow “beam” in which we

are searching through the rule space. To the top rules, we specialize them further,

AND’ing each rule with all features. We would now have the rules:

 IF X and Y then class

 IF X and Z then class

 IF Y and Z then class

The process repeats. The next loop we would generate rules with three conjuncts, until

we run out of features or reach our MAXCONJUNCTS limit. This routine is quite

compute intensive, especially for a large number of features and sample cases.

The CN2 algorithm has been tested on many sample machine learning tasks (heart disease

test data, plant classification, etc.) In many cases it not only produced more readable

rules, but also outperformed decision trees.

