
Problem and Search Spaces 

 

Chess has approximately 10
120

 game paths.  These positions comprise the problem search space.  

Typically, AI problems will have a very large space, too large to search or enumerate exhaustively.   

 

Our approach is to search the space for a path to some goal.  The problem may be formulated in terms of: 

• States -  describe the current state of the problem (or solution) 

• Initial state 

• Successor function – the “moves” we can make from one state to another 

• Goal test – some way to know if we reached the goal 

• Path cost – cost for each step from the initial state to the goal state 

 

Consider the state space for the Cannibals and Missionaries problem.  You have 3 cannibals and 3 

missionaries, all who have agreed they want to get to the other side of the river. You don’t want to ever 

have more cannibals than missionaries on one side alone or the cannibals may eat the missionaries.  The 

boat available only holds two people. 

State: number of cannibals and missionaries on each side of the river, location of boat 

Successor Function, or Move-Generator: 

 For side the boat is on: 

  if c>=2 send 2 cannibals 

  if c>=1 send 1 cannibals 

  if c>=1 and m>=1 send 1 cannibal and 1 missionary 

  if m>=1 send 1 missionary 

  if m>=2 send 2 missionaries 

Searching for a state:  apply all applicable moves to the current state to generate a new state, and repeat. 

 

Send 1M Send 2M Send 1C,1M Send 1C Send 2C

Return 1CReturn 1C Return 1M Return 1C

...

...

Left: 3C, 2M

Right: 0C, 1M, Boat

Death State!

Left: 3C, 1M

Right: 0C, 2M, Boat

Death State!

Left: 3C, 2M,Boat

Right: 1M

Death State!

Left: 2C,3M, Boat

Right: 1C

Left: 2C, 2M

Right: 1C, 1M, Boat

Left:3C, 3M, Boat

Right:0C, 0M

Left: 2C, 3M

Right: 1C, 0M, Boat

Left:2C, 3M, Boat

Right:1C, 0M

Left: 1C, 3M

Right: 2C, 0M, Boat

Left:3C, 3M, Boat

Right:0C, 0M

 

 

Note the space grows exponentially; difficult and almost impossible to enumerate for large spaces, at least 

to find a goal state (in this case, the goal state is when all 6 people are on the other side of the river).   

  



One solution: 

 

Initial State: 3m3cb  0m0c 

Send 2c: 3m1c  0m2cb 

Return 1c 3m2cb  0m1c 

Send 2c  3m0c  0m3cb 

Return 1c 3m1cb  0m2c 

Send 2m 1m1c  2m2cb 

Return 1m1c 2m2cb  1m1c 

Send 2m 0m2c  3m1cb 

Return 1c 0m3cb  3m0c 

Send 2c  0m1c  3m2cb 

Return 1c 0m2cb  3m1c 

Send 2c  0m0c  3m3cb 

 

Note that this problem is somewhat difficult for people to solve because it involved “backwards” moves 

where we take away people from the other side of the river.  People tend to think in terms of heuristics, 

which are essentially rules of thumb for progress, and these types of move violate the heuristic of “the 

more people on the other side of the river, the better”.  We will also have the problem of returning back to 

states we’ve already been in, which can raise the potential for endless loops in searching for a solution. 

 

 

Searching Problem Space – Uninformed Search Algorithms 

 

The problem space is a theoretical construct; the entire space “exists”.  However, only a portion of this 

space need (or can) be represented in the computer.  The rest will need to be generated. Question: best 

way to search/generate the nodes in the problem space? 

 

Breadth First Search (BFS) 

 

function BFS(state) 

 node-list =Apply-Moves(state)  ; return all valid “moves” from the current state 

 while (node-list != empty)  

  node=node-list.Remove-Front() 

  if Goal-Test(node) then return true 

  node-list.Enqueue-At-End(Apply-Moves(node)) 

 

By expanding new states at the end of the node-list, BFS systematically explores all children of a given 

state first.    The nodes on the list but not yet expanded are called the Fringe.  (Show order of node 

generation on Missionary/Cannibal problem).  This is different from “normal” BFS that is taught in 

algorithms classes because here we are not attempting to explore all states, but we are attempting to find a 

particular state.  Consequently, not all states will be explicitly enumerated. 

 



Advantages:  

Will never get trapped exploring a blind alley. 

Guaranteed to find solution, if it exists.  Good if solution is only a few steps away. 

Disadvantages: 

 Time and memory may be poor. 

 Call b the branching factor - the number of paths possible to take at a node. (show binary tree, 

branching factor=2).  At depth=0, nodes=2
0
=1. At depth=1, nodes=2

1
=2.  At depth=2, nodes=2

2
=4… at 

depth=10 nodes=2
10

=1024.  In general, nodes = b
d
.  This is fine for b=2,but consider a game like GO 

where b=50.  Then, if we want to look ahead to a depth of 6, we need to generate 50
6
=15600000000 

states.  If each state required 100 bytes, this would occupy 1.56 terabytes (1560 gigabytes). Too large to 

do and even store in memory, let alone most hard drives! 

 BFS requires O(b
d
) space to store the results.  Exponential time to generate!  Not feasible for 

large problems, these could take years to compute. 

 

 

 

 

Depth-First Search (DFS) 

 

function DFS(state) 

 stack = Apply-Moves (state)  // Push all the moves from the state onto a stack 

 while (stack != empty) 

  node= stack.Pop() 

  if Goal-Test(node) then return true 

  stack.Push(Apply-Moves (node)) 

 return false 

 

DFS always expands one of the nodes at the deepest level of the tree, and only when a dead end is hit, 

does search go back to expand nodes at shallower levels.  (Show example on Missionary/Cannibals 

problem). 

Advantages:  

 Requires space only in storing the path traversed.  For maximum depth m, requires bm nodes to 

be expanded, as opposed to b
d
 for BFS. 

 Might get lucky and find solution right away. 

Disadvantages: 

 Still has O(b
m
) time complexity. 

 May get stuck following an unfruitful path, or never find a solution if stuck in loop. 

 

Simple variation: Limit the depth that we can search (this is Depth-Limited DFS).  



 

Iterative Deepening Search 

 

Later we will combine both DFS and BFS together to get something called A*.  For now we will discuss 

DFID, Depth-First Iterative Deepening. 

Tries to combine DFS and BFS by trying all possible depths, starting with a very short depth.  Algorithm 

is to simply perform a DFS to depth 0, then to depth 1, then to depth 2, etc.  This is similar to BFS, but 

uses the DFS algorithm instead. (Show example on Missionary/Cannibal problem). 

Advantages: 

 Optimal and complete; will find a solution if one exists. 

 Same memory requirements as DFS. 

Disadvantages: 

 Some states will be expanded multiple times, especially initial moves and moves up in the search 

tree.  BUT the computation in an exponential search tree is dominated by the number of leaves; i.e. 

O(b
d+1

) dominates O(b
d
).  So this does not add significantly to runtime. 

 Ex: Tree with b=10, d=5. Number nodes = 1 + 10 + 100 + 1,000 + 10,000 + 100,000  

 

 Using DFID: 1st pass we examine 1 node 

   2nd pass we examine 1 + 10 = 11 nodes 

   3d pass we examine 1 + 10 + 100 = 111 nodes 

   4th pass we examine 1 + 10 + 100 + 1000 = 1111 nodes 

   5th pass we examine 1 + 10 + 100 +1000 + 10000 = 11,111 nodes 

   6th pass we examine 1+10 +100+ 1000+10000+100000 = 111,111 nodes 

   Total nodes = 123,456.  All previous passes contribute little, dominated 

    by the leaves on the last level of computation. 

In general, DFID is the preferred search method when there is a large search space and the depth of the 

solution is not known. 

 

Summary of BFS, DFS, DFID 

b=branch factor, d=depth of solution, m=maximum depth of search tree 

Criteria BFS DFS DFID 

Time b
d
 b

d
 b

d
 

Space b
d
 bm bd 

Optimal? (Find best 

solution) 

Yes No Yes 

Complete? 

(Guaranteed to find 

solution if exists) 

Yes No Yes 

 

 

 



Duplicate States 

 

So far we’ve been ignoring the possibility of making a cycle and returning to repeated states. In general, 

we don’t want to return to a duplicate state.  Typical solution is to either ignore the problem or use a hash 

table to store visited states, and then check for them before visiting.  O(1) time, although O(s) storage 

space required (using a good hash function). 

 

Bi-Directional Search: 

 

Not used too often; idea is to search simultaneously both forward from the initial state, and 

backward from the goal, and stop when the two searches meet in the middle.   

 

Ex: With Missionaries and Cannibals, search backwards from everyone on the right side of the 

river, along with searching everyone from the left. 

 

If solution found at depth d, the solution will be found in O(2b
d/2

) = O(b
d/2

) steps since the 

algorithm will only have to search halfway.  Can make a big difference! 

If b=10 and d=6, BFS generates 1,111,111 nodes, and bidrectional search only 2,222 nodes. 

 

Problem: One search needs to retain in memory all nodes examined so it is known if they meet.  

Requires O(b
d/2

) memory to store.  Also, you may not know the goal state or there may be 

multiple goal states (e.g. chess). 

 

 

Constraints 

Constraints are one way to limit the search space.  In the missionaries/cannibals problem, we could 

instead view the problem as having the constraint that we can’t make a move that results in more 

cannibals than missionaries, rather than create the death state.  As a result, there are fewer moves that can 

be generated.  Constraints are inherent in many search problems (e.g., crytpoarithmetic).   

 

Example:  CryptoArithmetic 

  S E N D  

+  M O R E 

-------------------------------------------------------- 

=    M O N E Y 

 

Here, no two letters have the same value.  The sums of the digits must be as shown in the problem. 

We could use normal DFS, BFS, or DFID.  In this case, we’d assign a value to each letter until we find a 

solution that works.  But the constraints of arithmetic help us solve the problem faster. 

Steps: 

1. Propagate constraints using the rules of the problem domain.  In this case, the rules of arithmetic. 

2. Guess value for some variable 

3. Repeat process by propagating constraints based on the guess 

4. If we reach a dead end, back up and take a different guess 

 



How the constraints help: 

Let’s rewrite the problem with carry’s: 

  C3 C2 C1 

  S E N D  

+  M O R E 

-------------------------------------------------------- 

=    M O N E Y 

 

We know that M=1 because two single digits + a carry can’t be more than 19 

If M=1, then S=8 or 9, has to be big enough to generate the carry 

If M=1 and S=8 or 9, then the sum of M+S+C3 will be either 10 or 11.  This means that O=0 or 1.  But 

since no two letters can be the same, and M is already 1, then O=0. 

If O=0, then then N=E+C2.  This means that N=E or N=E+1.  But since N can’t be E due to the constraint 

that no two letters be the same, then N=E+1. 

If N=E+1, then C2=1 

If C2=1, then N+R+C1>=10 

 

Without doing any search we’ve already identified several variables! 

When we can’t find any more constraints, we just need to guess a value for a variable. 

 

Guess that E=2. 

Then N=3 

R=8 or 9 

 

Guess that C1=1 

Etc…  until we find some set of variables that satisfy the equation.  At this point we’re doing a normal 

DFS search, propagating constraints each time, to narrow what moves we can make next. 

It’s left as an exercise to the reader to find the rest of the numbers that satisfy the equation. 

 

 

Generate and Test: 

 

Algorithm:  

1)  Generate possible solution.  This might be a entire path from the start state to the end state 

(as in Cannibals/Missionaries) or it might be a single state (trying to find the right values to 

optimize some function, say, the cryptarithmetic problem (SEND+MORE=MONEY)).    

2)  Test to see if solution works. 

3)  If found quit, otherwise return to step 1. 

 

Can be done systematically as in DFS.  May also be performed randomly to perform a more 

random search ; this has been called the British Museum Algorithm, named after visitors that 

randomly wander through the museum. 

 

The algorithm is typically implemented through DFS with backtracking. 



Best-First Search Methods 
 

So called Best-First Search methods should really be named “Possibly Best-First Search” since if 

we actually made the best move possible at every move, we wouldn’t be searching at all.  We’d 

just find a direct path to the goal. 

 

Most searches are based on heuristics, which makes them informed search techniques (as 

opposed to the previous techniques, which were uninformed): 

 

Heuristic h(n) = estimated cost of the cheapest path from the state at node n to a goal state 

 i.e. a guess as to the “goodness” of a particular state.  A heuristic only applies to 

 a particular state. 

 

 History: Heuristic comes from the Greek word “heuriskein” that means “to find”.  

Archimedes is supposed to have said “Heureka”, for ‘I have found it!’ not “Eureka”.    

Sample heuristics: 

 Consider navigation through Anchorage in a car.  You want to get to UAA from the 

convention center.  There are buildings in the way, and also one way streets, so the problem is 

not trivial.  A heuristic for how close you are to the goal might just be the air distance from your 

current location to the goal. 

 A second heuristic might be the Manhattan Distance, which is the sum of the horizontal 

and vertical distances to the goal. 

 Manhattan distance has been extensively studied with solving 8-puzzles. 

 Initial state: 

5 4  

6 1 8 

7 3 2 

 

 Goal state: 

 

1 2 3 

4 5 6 

7  8   

 Heuristic function h=sum of Manhattan distance for each tile 

 

Hill Climbing 

 

If you view the heuristic function applied to child states, then you can “climb the hill” that 

results: 

 

1)  Evaluate initial state.  If goal, then quit. 

2)  Loop until solution is found or no new operators left to apply to current state: 

3)  Apply new operator to current state 

4)  Evaluate new state.  If goal, then quit.  If not a goal but better than current state, then 

make it the current state.  If worse that current state, continue looping. 

 



Hill Climbing is often referred to as a “greedy” strategy since it follows whatever path looks best 

at the time. It also relies on an accurate heuristic to determine which operator to select. 

The simple algorithm is most commonly used as Steepest Ascent Hill Climbing. 

That is, apply all operators to the current state, and then pick the best resulting state as the new 

state.  It has been called “"Like climbing Everest in thick fog with amnesia." 

 

Example (show hill climbing for different goal=M and goal=K): 

 

Problems: 

 

 
 

Solutions: Backtrack to old solutions, then pick new direction 

  Make a random jump 

  Genetic Algorithms 

  Apply other rules before making tests 

 

Simulated Annealing 

 

Method intended to reduce risk of local maxima and ridges.  Based upon annealing of materials, 

such as steel.  In annealing, a material is heated to a high temperature and then cooled according 

to an annealing scheduling.  Quick/slow annealing results in material that may be brittle, smooth, 

etc.  Typically the material is cooled to produce a minimal energy state - i.e. energy-min is the 

goal. 

heuristic: higher=better

E

h=1

L

h=1

F

h=2

M

h=0

N

h=1

G

h=2

B

h=4

H

h=1

C

h=1

J

h=6

K

Goal

I

h=4

D

h=3

A



 

Allows for transition from low energy to high energy by: 

 

  p e E kT
=

−∆ /  

i.e. the probability of an uphill move decreases as the temperature decreases.  This is analogous 

to initially allowing uphill moves, but as we zero in on the goal state, allow fewer and fewer 

uphill moves until a minimum is attained. 

 

Algorithm: 

 

1)  If initial state is goal, quit 

2)  Set Best-So-Far to current state 

3)  Initialize T to annealing schedule (rate at which to cool) 

4)  Loop until solution is found or no new operators to apply 

5)  Apply new operator to current state 

6)  Compute change in energy; h(current) - h(new state) 

7)  If new state is goal, quit 

8)  If h(new state) > h (best-so-far) set best-so-far to new state and make it the current state 

9)  If not better than current state, make it the current state with probability p e E kT
=

−∆ / ; this 

probability decreases as T is lowered.  Right units must be found, typically k is a unit 

conversion factor. 

 

Things to fiddle with to improve performance based on problem: Annealing schedule, mapping 

values, backtracking, etc. 

 

Used to be a hot algorithm in AI, would help solve many search problems, but is now not used 

very widely. 

 

 

Beam Search 

 

The idea in beam search is to keep track of k states rather than just one.  Start with k randomly 

generated states.  Then, at each iteration, all the successors of all k states are generated. If any 

one is a goal state, stop; else select the k best successors from the complete list and repeat. 

 

 

 

Best-First Search 

 

There is an actual algorithm named “Best-First Search” which is essentially a general search 

using a heuristic function (hopefully this specific algorithm is not to be confused with the general 

class of best-first search algorithms).  Unlike DFS or BFS, Best-First Search remembers all 

previous moves and takes the next move that looks best, according to the heuristic function. 

 



Best-First-Search(start) 

open � start 

closed � empty 

while open ≠ empty do 

 x � remove leftmost state from open 

 if Goal(x) return x 

 succ � Production-Rules(x) 

for each child c of succ do 

  if c is not on open or closed 

   assign c a heuristic value 

   add c to open 

  if c is on open 

   if c was reached with a shorter cost 

    assign shorter path to c 

  if c is on closed 

   if c was reached with a shorter cost 

    assign shorter path to c 

    remove from closed 

    add c to open 

 Add x to closed 

 Reorder states on open by heuristic (leftmost node=best) 

Return failure 

 

Show example on graph below. Cost of move=1 

For now we’ll skip the case where we might have reached a node from a previous path.  The cost 

in this case for each move is 1. 

 

Start at A: 

 Open = [ (A, 2) ] 

 Generator successors for A: [ (B, 4) (C, 1) (D, 3) ] 

  

 Open = [ (B,4) (D,3) (C,1) ] 

 Closed = [ (A, 2) ] 

 Generate successors for B: [ (E, 1) (F, 2) (G,2) ] 

heuristic: higher=better

E

h=1

L

h=1

F

h=2

M

h=0

N

h=1

G

h=2

B

h=4

H

h=1

C

h=1

J

h=6

K

Goal

I

h=4

D

h=3

A

h=2



  

 Open = [ (D, 3) (F, 2) (G, 2) (C, 1) (E,1) ] 

 Closed = [ (B, 4) (A, 2) ] 

 Generate successors for D: [ (I, 4) ] 

 

 Open = [ (I,4) (F, 2) (G, 2) (C, 1) (E,1) ] 

 Closed = [ (B, 4) (D, 3) (A, 2) ] 

 Generate successors for I: [ (J, 6) (K, Goal) ]  

 

 Open = [ (K,Goal) (J, 6) (F, 2) (G, 2) (C, 1) (E,1) ] 

 Closed = [ (B, 4) (D, 3) (I,4) (A, 2) ] 

 K=Goal, quit 

 

We didn’t come across the case where a succ node was in open or closed.  We’ll look at this case 

next in A* search. 

 

 

A* Search: Minimize Total Cost 

 

h(n) attempts to address a way to minimize the cost to the goal state.  Let’s define: 

 

g(n) as the cost of the path so far.   

 

A natural method to approach search is to minimize the total cost: f(n)=g(n)+h(n). 

Consequently, f(n) should give us the estimated cost of the cheapest solution throughout the 

problem space.  Note that if h(n)=0 then we essentially have BFS.  Also note that here we are 

MINIMIZING the heuristic, not maximizing it.  That is, a small heuristic value is better than a 

large one. 

 

Algorithm: 

 

Run Best-First Search with a heuristic of f(n) = g(n) + h(n).  Small values are better than larger 

ones. 

 

Example: Run on the same graph as before, but with heuristic values flipped so that smaller is 

better.   The cost g(n) of making a move is 1. 



 

 Open = [ (A, 8) ] 

 Generator succesors for A: [(B, 3) (C, 6) (D, 4)] 

 

Open = [ (B,3) (D,4) (C,6) ] 

 Generate successors for B: [ (E, 7) (F, 6) (G,6) ] 

  

 Open = [ (D, 4) (C, 6) (F, 6) (G, 6) (E, 7) ] 

 Closed = [ (B, 3) (A, 8) ] 

 Generate successors for D: [ (I, 6) ] 

 

 Open = [ (I,6) (C, 6) (F, 6) (G, 6) (E, 7)] 

 Closed = [ (B, 3) (D, 4) (A,8)] 

 Generate successors for C  (tie, we could have done I,C,F, or G): [(H,7)]  

 

 Open = [ (I,6)(F, 6) (G, 6) (E, 7) (H,7)] 

 Closed = [ (B, 4) (D, 3) (C,6) (A,8)] 

 Generator successors for I  (tie) : [ (J, 4) (K, 3) ] 

 

 Open = [ (K,3) (J,4) (F, 6) (G, 6) (E, 7) (H,7)] 

 Closed = [ (B, 4) (D, 3) (C,6) (I,6) (A,8) ] 

 K=Goal, Quit 

 

More complicated example: Finding shortest path to goal.  Use Manhattan distance as the 

heuristic, where the Manhattan distance is just the number of edges to the goal. 

heuristic: lower=better
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Start in lower left corner.   

 Open = [ (0,3 f=0+6) ] 

 Generate succ for (0,3): [ (0,2 f=2+5), (1,3 f=1+5) ] 

 

 Open = [(0,2 f=2+5), (1,3 f=1+5) ] 

 Closed = [ (0,3 g=0) ] 

 Generate succ for (1,3) : [ (1,2 f=6+4), (2,3 f=2+4), (0,3 f=2+6)] 

 Since (0,3) is on closed but g=2 while old g=0, we don’t update (and we never will for 

the start node!) 

 

 Open = [ (2,3 f=6) (0,2 f=7) (1,2 f=10) ] 

 Closed = [ (1,3 g=1) (0,3 g=0) ] 

 Generate succ for (2,3) : [ (1,3 f=3+5) (2,2 f=6+3) (3,3 f=8+3) ] 

 Since (1,3) is on closed but g=3 while old g=1, we don’t update 

 

 Open = [ (0,2 f=7) (2,2 f=9) (1,2 f=10) (3,3 f=11) ] 

 Closed = [ (1,3 g=1) (2,3 g=2) (0,3 g=0)] 

 Generate succ for (0,2) : [ (0,1 f=6+4) (1,2 f=4+4) ] 

 (1,2) is on Open. We found a shorter path, so update it. 

 

 Open = [ (1,2 f=8) (2,2 f=9) (0,1 f=10) (3,3 f=11) ] 

 Closed = [ (1,3 g=1) (2,3 g=2) (0,2 g=2) ] 

 Generate succ for (1,2) : [ (0,2 f=6+5), (1,1 f=6+3) (2,2 f=7+3) ] 

 Ignore (0,2) since g > old path 

 Ignore (2,2) since g > old path 

 

 Open = [ (2,2 f=9) (1,1 f=9) (0,1 f=10) (3,3 f=11) ] 

 Closed = [ (1,2 g=4), (1,3 g=1) (2,3 g=2) (0,2 g=2) ] 

 Generate succ for (2,2) : (2, 1 f=7+2) (1,2 f=9+4) (3,2 f=10+2) (2,3 f=10+4) ] 

 Ignore (1,2) since g > old path 

 Ignore (2,3) since g > old path 

 

 Open = [ (2, 1 f=9) (1,1 f=9) (0,1 f=10) (3,3 f=11) ] 

 Closed = [(1,2 g=4), (1,3 g=1) (2,3 g=2) (0,2 g=2) (2,2 g=6) ] 

 Generate succ for (2,1) : …. Etc.  continue until reach the goal 
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Combines properties of breadth first search, but directs only along “good” paths.  

 

About the heuristic, h: 

 

If h is a perfect estimation of the actual distance to the goal, A* will converge immediately to the 

goal along the best path without doing any search.   

What about the properties of finding the optimal solutions and ensuring that we will find a 

solution if one exists? 

 

If h is possibly an overestimate of the distance to the goal, we could possibly be fooled into 

taking the wrong path and finding a non-optimal goal state.  Consequently, we need the property 

that h always return an underestimate of the actual distance to the goal to have the guarantee that 

we find the optimal solution.   This is called an admissible heuristic: 

 

An admissible heuristic never overestimates the cost to reach the goal. 

 

Note that the trivial admissible heuristic, h(n)=0, resorts to BFS which is optimal and complete. 

 

If h(n) is admissible, then A* will find the optimal solution, and is complete on locally finite 

graphs (graphs with finite branching factor).  The completeness follows from the monotonicity of 

h(n); i.e. h(b) <= h(a) + cost(a,b) if b is a successor of a.  The h(n)-cost will generally decrease as 

search along the path progresses (and f(n) increase).  Almost all admissible heuristics result in 

monotonically increasing f(n) functions.  If not, it’s possible to force an admissible heuristic to 

give monotonic results. 

 

Here is an example illustrating admissible heuristics and monotonicity: 

Consider the following tree: 

 

 

 

Above is a tree with an inadmissible heuristic.  Might find non-optimal answer. 

A* search will go from A to B to E to F. 

 

actual distance=1 per arc

F - Goal

g=3, h=0, f=3

E

g=2, h=3, f=5

B

g=1, h=5, f=6

D - Goal

g=2, h=0, f=2

C

g=1, h=6, f=7

A



 

This is an admissible heuristic.  Search does go the wrong path, to B first, and then it may go to 

E, but it will proceed to C and then D before going to F.   

 

The property of monotonicity says that f will be nondecreasing as we move to child states if the 

heuristic is admissible.  This is true in the second example; notice how f=1, 2, 3 or f=2,2 as we 

move along down the tree. 

 

Computation Time: Depends on h(n), could result in same computation time as BFS (O(b
d
)).  

The main problem is space: if the heuristic is not very good we could also generate exponential 

space to remember what nodes are on the OPEN list. 

 

IDA* - Iterative Deepening A* 

 

Will only mention here; just as we did DFID, we can also perform Iterative Deepening on A* to 

remove the memory constraints.  The idea is to perform a DFS using the f-cost as the limit rather 

than the depth-cost.  Once again we will revisit some nodes, but the complexity remains the 

same, and we only use O(bd) storage for a solution at depth d to store each node along the 

solution path. 

 

 

actual distance=1 per arc

F - Goal

g=3, h=0, f=3

E

g=2, h=0, f=2

B

g=1, h=0, f=1

D - Goal

g=2, h=0, f=2

C

g=1, h=1, f=2

A


