
More Tidbits on Data Compression 
 

(Above, Lena, unwitting data compression spokeswoman) 
 
We have already discussed creating Huffman codes.  Let’s examine some other methods of compressing 
data (run-length, arithmetic, and LZW) and also look briefly at the format used in JPEG images. 
 
Run-Length Encoding 
 
Data files often contain the same character repeated in sequence.  For example, text files contain multiple 
spaces for formatting tables or columns.  Images may contain multiple 0’s or 1’s for all black or all white.  
Digitized signals often contain long runs of zeros, for example quiet time between notes or times when the 
signal is not changing. 
 
The idea behind run length encoding is to represent long runs of zeros.  Each run of zeros (or some other 
repeating character) is represented by a flag indicating that run-length compression is beginning.  The flag 
is followed by the number of zeros. The flag could be expanded to include the actual repeating character if 
we wish to use this technique for more than just zeros. 
 
The process on a sample datastream is indicated below: 
 

 
The PackBits program on the Macintosh used a generalized RLE scheme for data compression. 
 
 
Arithmetic Encoding 
 
In arithmetic encoding, we turn an entire datastream into a single number!   The more data we have, the 
greater precision we will need in representing the number.   
 
There are two fundamentals in arithmetic coding: the probability of a symbol and its encoding interval range. 
The probabilities of source symbols determine the compression efficiency. They also determine the interval 
ranges of source symbols for the encoding process. These interval ranges are contained within the interval 
from zero to one. The interval ranges for the encoding process determine the compression output.  This is 
best demonstrated by an example. 
 
Let us assume that the source symbols are { 00, 01, 10, 11 } and the probabilities of these symbols are { 0.1, 
0.4, 0.2, 0.3 }, respectively. Then, based on these probabilities, the interval [0,1) can be divided as four sub-
intervals: [0,0.1), [0.1,0.5), [0.5,0.7), [0.7,1), where [x,y) denotes a half open interval, which includes x but 
excludes y. The above information can be summarized in table:  
 

 Symbols 00 01 10 11  
Probabilities 0.1 0.4 0.2 0.3  



Initial Encoding Intervals [0,0.1) [0.1,0.5) [0.5,0.7) [0.7,1)  
 
To encode a message of a binary sequence 10 00 11 00: 
 
We take the first symbol 10 from the message and find its encoding range is [0.5,0.7). Since the range of the 
second symbol 00 from the message is [0,1), it is encoded by taking the first 10th of interval [0.5,0.7) as the 
new interval [0.5,0.52).   In other words, we treat the range from [0.5, 0.7) as an entire interval, and then use 
the first 0.1 of this interval for the second symbol.  This process is repeated for the rest of the symbols.  To 
encode the third symbol 11, we have a new interval [0.514,0.52). After encoding the fourth symbol 00, the 
new interval is [0.514,0.5146).  The compression output of this message can be any number in the last 
interval.  For example, we could pick 0.5145. 
 
To decode the data, we apply the process in reverse.  We need to know the probability ranges, presumably 
transmitted with the data unencoded: 
 
Given 0.5145, the value is in the range [0.5, 0.7) so it is symbol 10. 
Given 0.5145, the value is in the 1st 10th of the interval [0.5, 0.7) so it is symbol 00. 
Given 0.5145, the value is in the 7th 10th of the interval [0.5, 0.52) so it is symbol 11. 
Given 0.5145, the value is in the 1st 10th of the interval [0.514, 0.52) so it is symbol 00. 
 
The resulting sequence of symbols is now 10, 00, 11, 00.  
 
Some issues to note: 
 
1) Since no single machine exists with an infinite precision, "underflow" and "overflow" are the obvious 

problems for the real world machines. We can use multiple bytes or words to represent higher precision 
if necessary, at additional expense in decoding these bytes and mapping them to the precision of the 
machine (e.g. 32, 64 bits). 

2) An arithmetic coder produces only one codeword, a real number in interval [0,1), for the entire message 
to be transmitted. We cannot perform decoding process until we received all bits representing this real 
number.  

3) Arithmetic coding is an error sensitive compression scheme. A single bit error can corrupt the entire 
message.  

 
LZW Compression 
 
This is a very popular form of compression that is used as the basis for many commercial and non-
commercial compression programs (gzip, pkzip, GIF, compressed postscript, “disk doublers”). LZW 
compression is named after its developers, A. Lempel and J. Ziv, with later modifications by Terry A. Welch. 
It is the foremost technique for general purpose data compression due to its simplicity and versatility. 
Typically, you can expect LZW to compress text, executable code, and similar data files to about one-half 
their original size.  
 
LZW is similar to Huffman encoding, except it uses a code table for sequences of characters.  Consider the 
example below: 
 



 
 
LZW compression uses a code table.  A common choice is to provide 4096 entries in the table. In this case, 
the LZW encoded data consists entirely of 12 bit codes, each referring to one of the entries in the code 
table. Uncompression is achieved by taking each code from the compressed file, and translating it through 
the code table to find what character or characters it represents. Codes 0-255 in the code table are always 
assigned to represent single bytes from the input file. For example, if only these first 256 codes were used, 
each byte in the original file would be converted into 12 bits in the LZW encoded file, resulting in a 50% 
larger file size. During uncompression, each 12 bit code would be translated via the code table back into the 
single bytes. Of course, this wouldn't be a useful situation.  
 
The LZW method achieves comp ression by using codes 256 through 4095 to represent sequences of bytes. 
For example, code 523 may represent the sequence of three bytes: 231 124 234. Each time the compression 
algorithm encounters this sequence in the input file, code 523 is placed in the encoded file. During 
uncompression, code 523 is translated via the code table to recreate the true 3 byte sequence. The longer 
the sequence assigned to a single code, and the more often the sequence is repeated, the higher the 
compression achieved.  
 
Although this is a simple approach, there are two major obstacles that need to be overcome: (1) how to 
determine what sequences should be in the code table, and (2) how to efficiently determine if a sequence of 
data has an entry in the code table. 
 
#1 is the subject of many algorithms (the authors of LZW propose one way to determine the codes using a 
state table).  For example, one could devise any algorithm to find repeat strings and use that to determine the 
code table sequences.  The longest, most repeating strings could be given a code assignment.   
 
#2 could be implemented in a simple or complicated manner.  However this implementation will greatly affect 
the execution time of the compression algorithm because it must search the code table to determine if a 
match is present. As an analogy, imagine you want to find if a friend's name is listed in the telephone 
directory. The catch is, the only directory you have is arranged by telephone number, not alphabetical order. 
This requires you to search page after page trying to find the name you want. This inefficient situation is 
exactly the same as searching all 4096 codes for a match to a specific character string. The answer: organize 
the code table so that what you are looking for tells you where to look (like a partially alphabetized 
telephone directory). In other words, don't assign the 4096 codes to sequential locations in memory. Rather, 
divide the memory into sections based on what sequences will be stored there. For example, suppose we 



want to find if the sequence: code 329 + x, is in the code table. The code table should be organized so that 
the "x" indicates where to starting looking. There are other schemes using hash tables, additional indices, 
and other techniques to help speed up the lookup process.  There are many schemes for this type of code 
table management, and they can become quite complicated.  
 
 
JPEG Image Compression 
 
Many methods of lossy compression have been developed; however, a family of techniques called 
transform compression has proven the most valuable. The most popular for images, and one of the best 
techniques, is the JPEG format.  JPEG is named after its origin, the Joint Photographers Experts Group. We 
will describe the general operation of JPEG to illustrate how lossy compression works.   A block diagram of 
the encoding process is below. 
 

 
JPEG compression starts by breaking the image into 8x8 pixel groups. The full JPEG algorithm can accept a 
wide range of bits per pixel, including the use of color information. In this example, each pixel is a single 
byte, a grayscale value between 0 and 255. These 8x8 pixel groups are treated independently during 
compression. That is, each group is initially represented by 64 bytes. Why use 8x8 pixel groups instead of, 
for instance, 16x16? The 8x8 grouping was based on the maximum size that integrated circuit technology 
could handle at the time the standard was developed. In any event, the 8x8 size works well, and it may or 
may not be changed in the future.  
 



The 8x8 group idea is demonstrated above on a greyscale image.  If we were working with a color image, we 
would essentially have the same picture for a Red, Green, and Blue component. 
 
The next idea is to treat each 8x8 group as a signal in the frequency domain.  For example, in the Fourier 
transform, we can represent a signal as a summation of sine and cosine waves.   JPEG uses the Discrete 
Cosine Transform (DCT), a relative of the Fourier transform, but the DCT only uses cosine waves. 
 
When the DCT is taken of an 8x8 group, it results in an 8x8 spectrum. In other words, 64 numbers are 
changed into 64 other numbers. All these values are real; there is no complex mathematics here. Just as in 
Fourier analysis, each value in the spectrum is the amplitude of a basis function.   You can think of these 
numbers as coefficients. Each coefficient represents the intensity of a particular 8x8 image each of which is 
shown in the diagram below. These 64 coefficients can be combined to give back the original 8x8 block of 
the image to be compressed. 
 
 



 
This is  a visual representation of 64 images that result from the DCT.  The images in the upper left 
correspond to “high frequency” spatial images, while the lower right are lower frequency.  We can re-create 
any 8x8 image block using these basis/principal-component images.  For example, 255*(upper-left-
image)+0*(all other images) results in an all white block of pixels. 
 
This at first, does not appear to give any saving since each DCT coefficient is represented with with 8 bits. 
The saving comes into play when you consider that the high spatial frequency DCT coefficients occur less 
and actually make less visual impact on the image. This means these DCT coefficients can be represented 
with fewer bits (ie. they are less important to the image). 
 
This step of reducing the number of bits representing DCT coefficients is called quantization. For each JPEG 
compressed image, there is a quantization table that determines how many bits represent each DCT 
coefficient.  By using fewer bits, we get better compression.  
 
First, when you consider how to order the DCT coefficients, it would be reasonable to order them in a zig-
zag way as shown in the diagram below: 
 

Given that the high spatial frequency DCT coefficients are less likely to be needed, many of these values will 
be zero and so improve compression when using Run-Length, Huffman or Arithmetic Encoding. 
 
In the JPEG compression so far, we have 64 DCT coefficients each of which can have values to differing 
degrees of accuracy. This gives rise to the fact that many of the coefficients will be zero valued and so using 
Variable Length Integers (VLI) would improve the compression.  Essentially, we determine in advance which 
image blocks should be represented with high precision (8 bits) or low precision (1 or 2 bits).  High 



frequencies are not as visible to humans for example, so it makes sense to only use a couple of bits to 
represent these values, resulting in compression with almost no perceptible difference to humans.  Since 
some of the run-size codes occur more frequently than others, it would be prudent to use either Huffman or 
Arithmetic Encoding. JPEG uses Huffman coding even though Arithmetic encoding gives 5-10% 
improvement over Huffman, this is because IBM own the intellectual property on Arithmetic Encoding and 
JPEG was designed to be freely available. 
 
Note that we can use the quantization step to vary the amount of compression.  If we only use a couple of 
bits to represent each coefficient, then we will have high compression at the cost of a fuzzy image.  Similarly, 
we could use all the bits (but compressed) for an exact replica of the original image. 
 
Here are a couple of images with varying quality factors from an original 82K 
 
QF 75    21K 
 

QF 20  7.5K 
 
 

QF 5  3.2K 



 
QF3  2.5K 

 
 
 
 
 
 
 
 
 
 
 
 
 


