Dynamic Programming Introduction
Chapter 16,26 — Materid augments Ch 16

Any recursve formula can be directly trandated into recursive dgorithms. However, sometimes
the compiler will not implement the recursve dgorithm very efficiently. When thisis the case,
we must do something to help the compiler by rewriting the program to systematicaly record
the answers to subproblemsin atable. Thisis the basic gpproach behind dynamic programming
—dl problems must have “optima subgtructure.”

Example Congder the Fibonacci sequence.
Fib(1)=1
Fib(2)=1
Fib(n)=Fib(n-1)+Fib(n-2)
Get Sequence: 1,1,2,3,5,8,12,20,32 ...

Implementation:

Recursve-Fib(n)
if n=1 or n=2 then return 1
else return Recursve-Fib(n-1)+Recursve- Fib(n-2)

Recursion Tree for Fib(6):
;

2 3
\ \ \ |

| 1 | [Fb@ | [Fib)| [Fib@)] [Fib)| [Fib(2)| |Fib(3)|

Lo JLe e JLa J[s |[re@f |Fow)

We end up recomputing Fib(3) three times, and Fib(4) twice!
A lot of redundant work recomputed.

Runtime T(n)=T(n-2)+T(n-1) ; grows at same rate as Fib sequence, exponential.

A better solution is to remember the previous answers to Fib(x), perhapsin atable, and when
needed again just pull the answer draight out of the table. Eliminates much recomputation. In
Fib, we redly only need to store the last two values, Fib(n-2) and Fib(n1) instead of smaller
Fib numbers.

Faster-Fib(n)
if n=1 or n=2 then return 1
dse
last— 1; next to last— 1;
forl- 1tondo
answer - lagt+next_to last
next to last- lagt
last— answer
return answer

Faster-Fib runsin O(n) time. Worksin a straightforward manner by remembering the previous
vaues. In this case we only had to remember the last two, but in genera we may need atable
to store previoudy computed values.

All-Pairs Shortest Path

Say we want to compute the shortest distance between every single pair of vertices. As
described earlier, we could just run Dijkstra s agorithm on every vertex, resulting in O(V?)
runtime.

Recdl the rdaxation property, where we set d[v]=min(d[v],d[u]+w(u,v)). Thisformula
indicates that the best distanceto v is ether the previoudy known distance to v, or the result of
going from sto u and then directly fromutov.

The dynamic programming dgorithm is based upon Dijkstra’ s observations.

Set Dy j to be the weight of the shortest path from vertex i to vertex j using only k nodes as
intermediaries.

Do,ij =WI[i,j] by definition.

Example

BONY
AN
\ /.
O,

T

s

6
Do can be represented asamatrix: shortest path between nodes using O intermediates (direct
links)

D(0) 1 2 3 4 5
1 0 3 8 ¥ -4
2 y 0 0 1 7
3 ¥ 4 0 ¥ ¥
4 2 y 5 0 v
S ¥ ¥ ¥ 6 0

Observation: The shortest path from vertex i to vertex j that uses only k intermediate nodes is
the shortest path that either does not use vertex k at al, or conssts of the merging of the two
paths vertex i to vertex k and vertex k to vertex j. Thisleadsto the formula

Diij=min{ Diaij Orf Duiaix+ Diakj}
Previousbest Previous best to vertex k, then best fromk to |

Putting this together into an agorithm, named Hoyd-Warshdl:
Hoyd-Warshdl-All-Pairs- Shortest(G,w)

Initidizedij] ~ W), ¥ if nosuchlink
Initidize pathfij] — ¥

fork- 1to|V|
fori- 1to|V]|
forj= 1to|V|
if d[i,K]+d[k,j]<d[i,j] then ; update min
dfi,j] = d[i,k]+dk,]
path[ij] - k ; store to get path

Here we use one matrix and overwrite it for each iteration of k.

Example on above graph:

D(k=0) j=1 2 3 4 5
=1 0 3 8 ¥ -4
2 ¥ 0 0 1 7
3 ¥ 4 0 ¥ ¥
4 2 ¥ -5 0 ¥
5 ¥ ¥ ¥ 6 0
Path =1 2 3 4 5
=1 ¥ ¥ ¥ ¥ ¥
2 ¥ ¥ ¥ ¥ ¥
3 ¥ ¥ ¥ ¥ ¥
4 ¥ ¥ ¥ ¥ ¥
2 y ¥ ¥ y ¥
Going through shortest path to vertex 1.
11 d(L,1)+d(1,1)<d(1,1)? 0+0<0? No
1,20 d(1,0)+d(1,2)<d(1,2? 0+3<3?No
2,1 d(2,1)+d(1,1)<d(2,1)? ¥ +3<¥ ?No
2,2, d(2,1)+d(1,2)<d(2,2)? ¥ +3<0? No
4,2. d(4,1)+d(1,2)<d(4,2)? 2+3<¥ ?YES Updated(4,2) to 5
45 d(4,1)+d(1,5)<d(4,5)? 2+-4<¥ ? YES Update d(4,5) to —2
D(k=1) j=1 2 3 4 5
=1 0 3 8 ¥ -4
2 v 0 0 1 7
3 ¥ 4 0 ¥ ¥
4 2 5 -5 0 -2
S ¥ ¥ ¥ 6 0
Path =1 2 3 4 5
=1 ¥ ¥ ¥ ¥ ¥
2 ¥ ¥ ¥ ¥ ¥
3 ¥ ¥ ¥ ¥ ¥
4 v 1 v v 1
S ¥ ¥ ¥ ¥ ¥

Going through shortest path to vertex 2 (includes going through vertex 1)

14 d(1,2)+d(2,4)<d(1,4)? 3+1<¥ ? YES, update d(1,4) to 4

Keep going, when k=5:

D(k=5) j=1 2 3 4 5
I=1 0 1 -3 2 -4

2 3 0 -4 1 1

3 7 4 0 5 3

4 2 -1 5 0 -2

5 8 5 1 6 0

Path j=1 2 3 4 5
I=1 ¥ 3 4 5 1

2 4 v 4 2 1

3 4 3 y 2 1

4 4 3 4 y 1

5 4 3 4 5 v

Digtance matrix gives the distance of the shortest path fromi toj. By following the node in the
path matrix, we can find the path to get the shortest path fromi toj.

Hard to follow table? Easier to visuaize on graph.
After k=0:

PONg

&inf @ 24
5:—2 7 8 4:Inf
5:Inf
- 1
4 5

Linf 12

2:Inf 2:Inf
3:Inf 3-5
46 5:Inf

k=1: Update shortest paths going via shortest path to vertex 1.
Thisis4® 2, 4® 5. Note 4® 3islarger going through 1 than direct edge.

3:Inf
4:1
ON
3 X
2:3
3.8 / \ L:Inf

4:Inf 8 > @ 2:4
5:-4 7 4:Inf
2 5:nf
1
4 5

Linf 12
2Inf 25
3Inf 35
4:6 52

k=2: Update shortest paths via shortest path to vertex 2.
3®4,3® 5,1® 4

1:Inf
3:nf
4:1
ON
TN
2:3
3:8 / \ L:Inf

4:4 ‘@ 2:4
5:-4 7 8 45
511
- 1
4 \ /;

L:nf 152
2:Inf 25
3:nf 3-5
4:6 5:-2

k=3: Update shortest paths via shortest path to vertex 3.
4® 2

1:Inf
3:Inf
41

ON
3

L:Inf 12

2:Inf 2-1

3inf 35
5:-2

k=4: Update shortest paths via shortest path to vertex 4.

(Many updates)
yc
231 / \ 17

44 @ 24
5:-4 7 8 45
53

1

k=5: Update shortest paths via shortest path to vertex 5.
1® 2,1® 3,1® 4

AR
o
N Ol -

1:3

3:.-4
41
5:-1
BONY
2:1 /\
3:-3 1.7

4:2 @ 24
5:-4 7 8 45
53
- 1
4 \ /5

Done! Have the shortest path between al nodes. If we maintain pointers to backnodes, we
can get the actud path as was done with the matrix.

Approximate String Matching

Later on, we will examine some agorithmsto efficiently determine if a pattern string P exigts
within text string T. If you have ever used the “Find” feature in aword processor to look for a
word, then you have just performed string matching.

If the pattern P is m characterslong, and thetext T is n characters long (we assume n>>m) then
the naive string matching agorithm that scans through T, comparing each character to onein P,
takes O(mn) in the worst case, O(n) on average.

But what about approximate matches? When if the pattern is only off by one character? What
if the pattern is only missng one character? The naive agorithm will say that the string does not
meaich at dl. The approximate string matching agorithm has many usesin text processing,
language recognition, checking for misspelled words, and speech recognition.

Let k be anonnegative integer. A k-agpproximate match isamatch of Pin T that has a most k
differences. The differences may be one of the following three types:

1. The corresponding charactersin Pand T are different
2. Pismissng acharacter that appearsin T

3. T ismissing acharacter that appearsin P

Example

P= anchorge
T= a chorae (nospacethere, just added for illustrating mismatch)

Two mismatches, one a the missing n, another at different g/a. Naive agorithm would say that
every character mismatches except the al

We can solve this with dynamic programming.

Let D[i,j] be the minimum number of differences between P;..P, and asegment of T between
To.T,.

There will be ak-gpproximate match ending a t; for any j such that D[m,j]<=k. Thusif we
want to find the first k-gpproximate match, we can stop as soon as we find an entry less than or
equd tok inthe last row of D. The rulesfor computing entries of D consider each of the
possible types of differences outlined above.

D[i,j] isthe minimum of :

1. If B =T, thenD[i-1,j-1] dse D[i-1,j-1]+1 If match, then previous best mismatch
otherwise mismatch, so add 1 to
difference

2. D[i-1j]+1 P, missngfrom T

3. Dlij-1]+1 T; missing from P

If building up values of D in atable, very ample lookup with rows to n, length of text, and
columns m, length of the pattern. Canfill in top row with zero’s sSince an empty pattern string
has no differencesin any target text. Thefirg column isfilled with the vaue of m, Snce a paitern
of length m will have m mismatches with an empty text.

Computing DJi,j] can be done only looking at neighbors!

D 0 1 2 3 4 n
0 0 0 0 0 0 0
1 1
2 2 D[i-1,j-1] | D[i-1]
D[i j-1] DIi,j]
m m
Example
H a v e a h S p p y
0 0 0 0 0 0 0 0 0 0 0 0 0
h 1 1 1 1 1 1 1 1 0 1 1 1 1
a 2 2 1 2 2 2 1 2 1 1 2 2 2
p 3 3 2 2 3 3 2 2 2 2 1 2 3
p 4 4 3 3 3 4 3 3 3 3 2 1 2
y 5 5 4 4 4 4 4 4 4 4 3 2 1

If we were happy with a 3 dement mismatch, we could stop once we find a3 in the last row.
The best we can doisa 1 dement mismaich.

Runtime? O(mn) to fill the table.
Space? Thetable D isvery large snce n will typicdly belarge.
BUT we don’t have to store the whole table. What parts of the table do we need?

Implementation: Easy to do, |eft as an exercise.

Knapsack Problem

Given n items, each with avaue v[1] and weight w[l] and kngpsack capable of supporting
weight W, find the largest-valued subset possible to carry in the knapsack.

This solution first solves the problem for knapsacks capable of supporting weight 1, weight 2,
weight 3, and so on, up until weight W. Solutions for small knapsacks can be used to find
solutions for larger knapsacks.

To further divide the problem, the steps outlined above are executed for different combinations
of items. Firgt, we find the optima solution only using item 1. Then we find the optima solution
if wedlow the use of item 1 and 2, thenitem 1,2, and 3, and so on up until we reach item n.

Let’sdefine best[i,k] to be the maximum value that a knapsack capable of supporting weight k
can hold, usng items 1 through i. If we sort the items by weight (item 1 isthe lightest, item nis
the heaviedt, then we have the following:

best[i,k] =0 if i=0 or k=0 (no items or knapsack with
ahaeinit)
best[i-1,k] if k<w

(item istoo heavy for knapsack of sizek,
s0 the best we can do is the previous best)

max(bestfi-1,k], if k3 w,
best[i-1,k-wi]+v)

(if item fits, the best we can do is ether the previous
best, or it'sthe best vaue with the knagpsack of weight
just cagpable of supporting the item but not including
theitem (k-w;), plus the vaue of the item,

whichever is bigger)

We can now congtruct a table looking something like the following. We can fill in zeros for
k=0 and 1=0. The rest must be caculated from the recursve formula. For example, if W=4
and n=4, and v[1]=3, w[1]=2; v[2]=5, w[2]=2; v[3]=6, W[3]=2; v[4]=10, w[4]=5 we get the
numbers shown below:

best[i K] k=0 k=1 k=2 k=3 ... k=W
=0 0 0 0 0 0 0
=1 0 0 3 3 3
=2 0 0 5 5 8
=3 0 0 6 6 11
.. 0 0 6 6 11
I=n 0

Once the table has been filled in, our answer for the largest weight possible is smply the number
in the lower right hand corner of the matrix. To actudly find the sat of items, we can sore the
last item put into the knapsack into the array as atuple (bext[1 K] ,last item) whenever acdl is
updated. The last item will ether be I-1 or |, depending on which course of action istaken in
the recursive formula. Our table becomes something like:

bedfiklJas| k=0 k=1 k=2 k=3 k=W

t

1=0 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

1=1 (0,0) 00) | (3item1) | (3,item1) | (3,item1)

1=2 (0,0) 00) | 5 item?) | (5,item2) | (8,item?2)

1=3 (0,0) 00) | (6,item3) | (6,item?3) | (6,item3)
. (0,0) 00) | (6 item3) | (6,item3) | (6,item3)

I=n (0,0)

To find the optimum sat of items S, we sart in the lower right hand corner and put thet item into
the kngpsack. Then, we work our way to the left by subtracting off the weight of the item and
move up until we get to an item different from the one we just removed, repeeting the process
until weend up O. In the example above, we d firgt put item 3 into the knapsack, then move left
two spaces since the weight of item 3 is 2, which brings us to the column where k=2. Now we
move up to column 2, a which point the item is different from item 3. The item stored isitem 2,
S0 we put an item2 into the knapsack, subtract 2, and quit since k is now zero.

The time required to build this matrix is clearly O(Wn) and would be very sraightforward to
implement in two FOR loops. The space required in the straightforward implementation is
O(Wn) space, but we redly only need to keep track of the previous row. If wejust overwrite
old vauesin the current row, the dgorithm can be implemented in O(W) space.

