Greedy Algorithms
Chapter 17

Elements of Greedy Algorithms

What makes an agorithm greedy?

1. Greedy choice property
2. Optima substructure (idedlly)

Greedy choice property: Globaly optima solution can be arrived by making alocaly optima
solution (greedy). The greedy choice property is preferred since then the greedy agorithm will
lead to the optimd, but thisis not dways the case — the greedy dgorithm may lead to a
suboptima solution. Similar to dynamic programming, but does not solve subproblens.
Greedy dtrategy more top-down, making one greedy choice after another without regard to
subsolutions.

Optimd subgtructure: Optima solution to the problem contains within it optima solutions to
subproblems. Thisimplies we can solve subproblems and build up the solutions to solve larger
problems.

Activity Selection Problem

Problem: Schedule an exclusive resource in competition with other entities. For example,
scheduling the use of aroom (only one entity can useit a atime) when severd groups want to
useit. Or, renting out some piece of equipment to different people.

Definition: Set S={1,2, ... n} of activities. Each activity hasadart time s and afinishtimef;,
where s<fi. Activitiesi and j are compatibleif they do not overlgp. The activity sdection
problem isto sdect amaximum-sze sat of mutualy compatible activities.

A smple greedy dgorithm solves this problem optimally:
1. Sort input activitiesin order by increasing finishing time
n- lengths]
A-1
j- 1
fori- 2ton
6. if 53 fi then

7. A- AE{i}

8 J&i
9. return A

a s~ w D

Just marches through each activity in terms of the finishing time, and schedulesiit if possible.

Example

I gat finish
1 1 4
2 3 5
3 0 6
4 5 7
5 3 8
6 5 9
7 6 10
8 8 11
9 8 12
Schedulejob 1.

1111

222

Job two does not fit, so don't add it. Try job 3:

1111
0000000

Job three does not fit, don’'t add it. Try job 4:

1111
444

Fits, soleaveitin. Try job 5,6, 7:

1111
444
555555
66666
7777

None of thesefit, try job 8:
1111

444
8888

Job 9 does not fit.

Thisisthefind, optima schedule that maximizes the number of people that want to use of the
room. The runtime is smple O(nign) to sort, and then O(n) to run through the finishing times,
meaking this dgorithm O(nlgn) overdl.

Greedy Algorithms vs. Dynamic Programming

Greedy agorithms and dynamic programming are Smilar; both generdly work under the same
circumgtances dthough dynamic programming solves subproblemsfirgt. Often both may be
used to solve a problem athough thisis not dways the case.

Congder the 0-1 knapsack problem. A thief isrobbing astore that hasitems 1..n. Eachitemis
worth v; dollars and weighsw; pounds. The thief wants to take the most amount of loot but his
knapsack can only hold weight W. What items should he take?

This problem has optimal substructure.

Dynamic programming: We showed that we can solve thisin O(nW) time, gives optimd vaue.
Greedy dgorithm: Take as much of the most vduableitem first. Does not necessarily give
optima value! (Homework problem to show this).

A smpler verson of the knapsack problem is solved optimaly by this greedy dgorithm:

Consder the fractiona knagpsack problem. Thistime the thief can take any fraction of the
objects. For example, the gold may be gold dust instead of gold bars. In this case, it will
behoove the thief to take as much of the most vauable item per weight (vaue/weight) he can
carry, then as much of the next vauable item, until he can carry no more weight.

Totd vaue uang this srategy and the above exampleis 8 of item 1 and 2 of item 2, for atotal
of $124.

Mord: Greedy dgorithm sometimes gives optima solution, sometimes not, depending on the
problem. Dynamic programming, when gpplicable, will typicdly give optimd solutions, but are
usudly tricker to come up with and sometimes trickier to implement.

Huffman Codes

Huffman codes are frequently used for data compression. Huffman encoding is one of the
earliest data compression dgorithms, popular programs like Pkzip and Stuffit use their own
techniques but are based on the originad schemes such as Huffman or LZW. Compressonis
useful for archival purposes and for data transmission, when not much bandwidth is available.

Idea Let’'s say you want to compress your file, and your file only contains 6 characters,
ABCDEF. If you store these usng an 8-bit ascii code, you will need space 8N bits, whereniis
the numbers of charactersin your file. If n=1000, thisis 8000 bits.

One way to do better: Since you only have Six characters, you can represent these in fewer bits.
You redly only need three bits to represent these characters.

000
001
010
011
100
101

TmMmoOm@ >

Immediately, we can reduce the storage necessary to 3N hits. If n=1000, thisis 3000 hits.
What if we count the frequency of each letter and have something like the following?
A: 45% B:10% C:10% D:20% E:10% F:5%

Now if we assgn the following codes:

0 A 45%
100 B 10%
101 C 10%
111 D 20%
1100 E 10%
1101 F 5%

Notice we need 4 hits to represent F now, but the most common character, A, is represented
by just 1 hit.

Also note that Since we are using a variable number of bits, this messes up the counting
somewhat. | can’'t use 110 to represent D, since then if a 110 popped up we can't tell if thisis
referring to D or E, since both start with 110 — we need unique prefixes.

For example to store ABFA is. 010011010
Now, to store 1000 characters with this frequency and encoding scheme requires.

450*1 + 3*100 + 3* 100 + 3*200 + 4* 100 + 4*50 = 2250 bits. 25% improvement
over before,

Question: We can find frequencies easly in O(n) time by linearly scanning and counting up the
number of occurences of each token. How do we determine what codes should be assigned
each character?

Idear Count up frequencies, and build up trees by extracting minimum.

Huffman(S/) ; S=gring of charactersto encode.
; F=frequences of each char
n- |9 ; Make each character a‘ node
Q- S ; Priority queue using the frequency as key

forj— 1tonldo
z- Allocate-Node()
x- |efffz] = Extract-Min(Q)
y- rightfz] - Extract-Min(Q)
flz] = f[X]H]y] ; update frequencies
Insert(Q,2)
return Extract-Min(Q)

Example
First make each character a node by itsdlf.

A:45% B:10% C:10% D:20% E:10% F:5%

A:45 B:10 C:10 D:20 E:10 F:5

Extract the minimum and join together. These will end up as leaves farther down the tree.
Mins=F and E. Put sum asthe new frequency. Put minimum to the |eft.

A:45 B:10 C:10 D:20

AN

F:5 E:10

Repesat process. Extract min, B and C, and put sum as new frequency:

A:45

2

B:10

C:10

D:20

S

F:5

E:10

Repeat process: Extract D and 15 as min, put sum as new frequency:

A:45

B:10

C:10

S

D:20

AN

F:5

E:10

Repeat process. Extract 20 and 35 as min, put sum as new frequency:

A:45

B:10

C:10

/ @\
R

AN

D:20

F:5

E:10

Finaly, combinewith A and assign 0,1 to edges.

B:10 || C:10 D:20
0 1
F:5 E:10

Travel down tree to get the code:
0

100

101

111

1100

1101

TmMmoOOm >

We're donel

Correctness. Thiswe will not prove, but the ideaiis to put the rarest characters at the bottom of
the tree, and build the tree so we will not have any prefixes that are identica (Quaranteed in tree
merging step). By putting the rarest characters at the bottom, they will have the longest codes
and the most frequent codes will be at thetop. This agorithm produces an optima prefix code,
but not necessarily the most optima compression possible.

Runtime of Huffman’sdgorithm: If Q implemented as a binary heagp then the extract operation
takesIgntime. Thisisingde afor-loop that loops n times, resulting in O(nign) runtime.

