CA411 Lecture Notes
1/30/01

Heaps, Heapsort, Priority Queues
Sorting problem so far:

Insertion Sort: In Place, O(n?) worst case

Merge Sort : Not in place, O(nlgn) worst case

Quicksort : In place, O(n?)worst case, O(nlg n) expected case
Heapsort : In place, O(nlg n) worst case

Heap:
A data structure and associated algorithms, NOT GARBAGE COLLECTION

A heap data structureis an array of objects than can be viewed as a complete binary tree such
that:

Each tree node corresponds to e ements of the array

Thetreeis complete except possbly the lowest levd, filled from Ieft to right

The heap property for dl nodes| in the tree must be maintained except for the root:
Parent node(l) 3 |

Example: Givenarray [22131087624 3 5]

22
|
, |,
13 10
4 56,_‘_\7
8 7 6| |2
8 9 10
4| |3 5

Note that the eements are not sorted, only max element &t root of tree,

The height of anodein the treeis the number of edges on the longest smple downward path
from the node to alesf; eg. height of node 6 is 0, height of node 4 is 1, height of node 1is 3.

The height of the tree isthe height from the root. Asin any complete binary tree of Szen, thisis
Ign.

Caveats. 2"nodesat level h. 2™ - 1total nodesin a complete binary tree.

A hesp represented as an array A represented has two attributes:
1. Length(A) — Size of the array
2. HeapSize(A) - Size of the hegp
The property Length(A)3 HegpSize(A) must be maintained. (why ?)
The heap property is stated as A[parent(l)] 3 A[l]

Theroot of thetreeisA[1].

Formulato compute parents, children in an array:
Parent(l) = A[&l / 2(]
Left Child(l) = A[21]
Right Child(l) = A[2I+1]

(Show how to represent the above tree as an array in the example)

Where might we want to use hegps? Consider the Priority Queue problem: Given a sequence
of objects with varying degrees of priority, and we want to ded with the highest-priority item
fird.

Managing ar treffic control - want to do most important tasksfirst.

Jobs placed in queue with priority, controllers take off queue from top
Scheduling jobs on a processor - critica gpplications need high priority
Event-driven smulator with time of occurrence askey. Use min-heagp, which

keeps smalest dement on top, get next occurring event.

To support these operations we need to extract the maximum eement from the hegp:

HEAP-EXTRACT-MAX(A)

remove A[1]
A[l]-~ Aln| ; nis HegpSize(A), the length of the heap, not array
n- nl ; decrease Size of heap

Heapify(A,1,n) ; Remake heap to conform to heap properties

Runtime: Q(1) +Hespify time

Differences from book :
no error handling
n instead of HegpSize(A)
dightly higher abgraction
Passing “n” to Hegpify routine

Note Successve removaswill result in items in reverse sorted order!

Wewill look at:

Hegpify : Maintain the hegp property
Build Hegp : How to initidly build a hegp
Heapsort : Sorting using a hegp

Hegpify: Maintain hegp property by “floating” avaue down the hegp that dartsat | until itisin
the right pogtion.

Heapify(A,1,n) ; Array A, heapify node |, hegpsizeisn
; Note that the left and right subtrees of | are dso heaps
; Make I’ s subtree be a heap.

If 21 £nand A[21]>A[l]
; seewhich islargest of current node and its children
then largest— 2l
dselagest- |
If 21+1£nand A[21+1]>A[largedt]
then largest— 21+1
If largest * |
then swap A[l]« Aflargedt]
Heapify(A largest,n)

Differences from book : 21 and 21+1 instead of |eft and right, n instead of hegpsize

Example: Heapify(A,1,10). A=[113108762435]

Find largest of children and swap. All subtrees are vaid heaps so we know the children are the
maximums

Next is Heapify(A,2,10). A=[131108762435]

Next is Heapify(A 4,10). A=[138101762435]

Next is Heapify(A,8,10). A=[138104762135]
On thisiteration we have reached aleaf and arefinished. (Congder if Sarted at node 3, N=7)

Runtime: Intuitively thisis Q(Ig n) since we make one trip down the path of the tree and we

have anadmost complete binary tree. Thiswould correspondto: T(n) =T (g) +Q@O)

Wordt-case Runtime actudly equd to: T(n) = T(%) +Q(1) . Split probleminto at least 2/3

thesze. Congder the number of nodes on the left Sde vs. the right in the most unba anced
date:

In the worst case a hegp of height n has dl of the bottom leaves of the left child filled and the
right child hasheight n-1. Thisis the most unbalanced a tree will ever become due to the heap

property.

For any complete binary tree of n nodes and | leaves, where the lowest level isfull, I=n+1. Tha
is, haf of thetreeisleaves.

For atree of height h, the number of leavesin acomplete binary treeis 2" and the number of
nodes (not counting leaves) is 2" -1.

) 1 1
So in the worst case, the left subtree has aboutEZh + 52“ leaves + nodes.

The right subtree has % 2" nodes.

1 h 1 h
_2 +_2 2
If we take theratio of the left subtree over the total number of nodes: 2 2 =—
1. .. 1..,.1.,. 3
2% 732 152

So we are able to plit the problem by at least 1/3 each iteration of the loop in the worst case.

Given: T(n) = T(%) +Q(1) Can solve by the master theorem.
Case 2.

a=1,b=3/2

s Q@) = Q(n'*%+*)?

Q1) =Q(n°)?

YES, s0 T(n)=Q(f(n)Ign)=Q(gn)

Building The Heap:

Given an array A, we warnt to build this array into a heap.
Note: Leaves are dready a hegp! Start from the leaves and build up from there.

Build-Heap(A,n)
for | = ndownto 1 : could start at n/2
do Heapify(A,1,n)

Start with the leaves (last %2 of A) and consder each leaf asa 1 dement hegp. Cal

heapify on the parents of the leaves, and continue recursively to cal Heapify, moving up the tree
to the root.

Example Build-Heap(A,10). A=[15947 10263 14]

Heapify(A,10,10) exits since thisis a ledf.

Heapify(A,9,10) exitsSncethisis aledf.

Heapify(A,8,10) exits Sncethisisaledf.

Heapify(A,7,10) exitssncethisis aledf.

Heapify(A,6,10) exitsSncethisisaledf.

Heapify(A,5,10) puts the largest of A[5] and its children, A[10] into A[5]:

A=[159414102637]

Heapify(A ,4,10):
1

A=[159614102437]

Heapify(A,3,10):
1

A=[151061492437]

Hespify(A,2,10): Fird iteration:
1

this calls Heapify(A5,10):

A=[114106792435]

Heapify(A,1,10):
1

Finished heap: A=[147106592431]

Running Time: We have aloop of n times, and each time call hegpify which runsin Q (Ign).
Thisimpliesabound of O(nlgn). Thisis correct, but isaloose bound! We can do better.
Note: Thisisagood gpproach in generd. Start with whatever bound you can determine, then
try to tighten it.

Key observation: Each time hegpify isrun within the loop, it is not run on the entire tree. We
run it on subtrees, which have alower height, so these subtrees do not take Ign timeto run.
Since the tree has more nodes on the leaf, most of the time the hegps are smal compared to the
Szeof n.

Better Bound for Build-Heap:

Property: In an n-element heep there are at most 2_r:1 nodes of height h (The leaves are height 1

and root at Ign, thisis backwards from normad). The time required by Hegpify when cdled in
Build-Heap onanode a height his O(h); h=Ign for the entire tree.

Cog of Build-Heap is.
heap__ height
T(n)= & (#nodes_at _h)(Heapify- Time)

h=1
Ign
T =a Z—r‘hO(h)
h=1
5

a3" n
T(n) =08 —h=
") g?:th @

3 X
Weknow that @ nx" = ——-.
n=0 (1_ X)2

X hae’L(jh 1/2

If x=1/2 then (1/2)"=1/2" s0:

b N ——
nazo e2g (1- :|./2)2
Subgtitute this back in, which is safe because the sum from O to infinity is LARGER than the sum

from 1 to Ign. This means we are working with a somewhat looser upper bound on the right
hand sde::

.
T(n) £0GNg hihg

€ h=0 2 7]
T(n) £0(n2)

T(n)=0(n)

DONE!

HeapSort: Once we can build a hegp and heapify a heap, sorting iseasy. Ideaisto:

HeapSort(A,n)
Build-Heagp(A,n)
forl = ndownto 2
do Swap(A[1] « A[l]
Heapify(A,1,1-1)

Slightly different from book. The book removes roct, puts into sorted list. In this

example we are sticking it a the end of the array and the loop decreases the size, so the dement
is not touched again.

Example: HegpSort(A,7) A=[147106592] (dready aheap)

5 6 7
(o] [=] [2] 4]

Heapify(A,1,6)
1

5 6 7.
@ M A=[107965214]

Swap root with 6:

A=[972651014]

A=[762591014]

Hesapify(A,1,3)

A=[652791014]

A=[526791014]

A=[256791014]

We are donel

Runtime is O(nlgn) since we do Heapify on n-1 elements, and we do Heapify on the whole tree.

Note: In-place sort, required no extra storage variables unlike Merge Sort, which used extra
gpace in the recursion.

Variation on hegps.

Heap could have min on top instead of max

Heap could be k-ary tree instead of binary

Priority Queues. A priority queueis adata structure for maintaining a set of S eements each
with an associated key value. Operations:

Insert(Sx) puts dement x into set S
Max(Sx) returnsthe largest dementinsat S
Extract-Max(S) removes the largest dementinset S

Uses: Job scheduling, event driven smulation, etc.

We can modd priority queues nicely with ahegp. Thisis nice because hegps dlow usto do fast
gueue maintenance.

Max(Sx) : Just return root dement. Takes O(1) time.

Heap-Insert(A key)
n- n+l
l = n
whilel >1and Al &l / 2(] < key
do Alll = Ald /2]
| = @a/2(
A[l] = key

Idea: same as hegpify. Start from anew node, and propagate its value up to
right leve.

Example: Insart new dement “11” darting at new node on bottom, 1=8

olajafa

11

..........

] o)

7 /
fﬁ@ﬂ
0

I=4, bubble up again

At this point, the parent of 2 islarger so the algorithm stops.

Runtime = O(Ign) since we only move once up the tree levels.

Heap-Extract-Max(A,n)
max- A[1]
A[1]- A[n]
n- nl
Heapify(A,1,n)
return max

Idea: Make the nth element the root, then cal Hegpify to fix.
Uses a congtant amount of time plus the time to call Hegpify, which is O(Ign).
Totd timeisthen O(Ign).

Example: Extract(A,7):

We have anew hegp that is valid, with the max of 14 being returned. The 2 isgtting in the
array twice, but snce n is updated to equd 6, it will be overwritten if a new dement is added,

and otherwise ignored.

In generd: Heaps have log or constant operation on queues as opposed to linear.

Length O(lgn) O(n)
8 3 8

16 4 16
32 5 32
256 8 256
1024 10 1024
4096 12 4096
Recap of sorts so far:

Insertion, Merge, Heap, Quicksort

Congder if linked ligts, cost to traverse!

Quicksort is actually used most frequently despite O(rf) worst case runtime

