P/NP Introduction
Chapter 36

Note: Book describes the PINP problemsin terms of Languages, we will skip this method of
andyss.

Some problems have dgorithms that run in a reasonable amount of time (polynomid time O(rf)
where c is afixed congant) but some problems are not known to have fast agorithms - maybe
they do and maybe they don’t. We are going to look at some of these types of problems. So
far we have looked at problems that are O(17). Although r? problems may not seem fast, they
are much faster than exponentid size problems.

It isimportant to know when you are trying to write an agorithm to solve a problem that may
not have aknown fagt solution. Y ou then want to look for a different way to formulate the
problem.

There are problems that run in time O(2"") and for which it is provable that thisisthe BEST

agorithm that existsl So the lower bound is exponentid! These andlysis only gpply to serid
computation; most models of computation are the same with respect to time (seria random
access machine, turing machine, etc.)

Polynomia timeis consdered reasonable or tractable. Algorithms that have a O(rf)
running time.

Exponential time is considered unreasonable or not tractable. Algorithms with a W(k™")
running time, where k > 1.

Magnitude of problems we can solve:

n 13 2"

10 100 2'° 1024, not too big, 0.001 to compute

170 29000 2% number of atomsin the planet, centuries to
compute

223 49000 2?2 number of aomsin gdaxy, millenniato
compute

1000 1000000 219 2 need to measure in astronomical
time

Solutions that require exponentid time are essentidly usdessunlessnisvery smdl. These are
the hard problems!

There are hundreds of interesting, useful problems that are known to require exponentia time, in
areas such as boolean logic, graphs, arithmetic, network design, number theory, games and
puzzles, linguistics, language theory, and more.

Types of problems we will examine:

1. Optimization: Find vaues/configuration to optimize againgt other congraints. The “answer”
isthe optima st of vaues.

2. Decisgon: A smple YES/INO answer is given, usudly to indicate whether or not some
threshold vaue can be achieved in the problem. We can make a decision problem out of
every optimization problem that isamost as hard (till only exponentid time solutions
known).

Examples of hard problems:

Graph Coloring : A coloring of agraph G=(V,E) isamapping C:V ® Swhere Sisafinite st
of “colors’ such that if (u,v) isan edgein E, then C(v)<>C(u). In other words, adjacent
vertices are not assigned the same color. X(G) isthe chromatic number of G, or the smalest
number of colors needed to color G.

1. Optimization Problem: Given G, determine X(G) and produce an optima coloring (i.e. one
that uses only X(G) colors).

2. Decisgon Problem: Given G and a pogtive integer k, isthere acoloring of G using & most k
colors? If so, Gissad to be k-colorable).

Example

O © @

O ©©

Basic technique for graph coloring:

fori- 1tondo
color- 1
while thereis a vertex adjacent to v[1] that is colored color
do color=color+1
color v[I] with color

But thisis not guaranteed to give optima. If visit nodesin order top, bottom, top, bottom, ...
then get a coloring like above. If vist dl the top onesfirgt, get below which uses only 2 colors:

O O O

© © U

The dgorithm we just gave is an gpproximeation agorithm — not guaranteed to be optimal, but a
solution that may be close to optima. Finding the optimd is Hill only known if we use

exponentid time!
Graph coloring is an abstraction of certain types of scheduling problems.
Oneexample:

Final exams at auniversity, with four exams each day to be held over two daysfor a
totd of 8 time dots. Many classeswill be having findsin pardld a the same time out of these
timedots. Consder that we have an unlimited number of rooms. The exams for some
courses must be at different times since many students may be in both classes.

Let V be the set of courses, and let E be the pairs of courses whose exams must not be
at the same time; i.e. connect together the courses where a student is enrolled in both courses.

Then the exams can be scheduled in the 8 time dots without conflicts iff the graph
G=(V,E) can be colored with 8 colors. Those classes with the same colors can have finds a
the sametime. The minimum number of colors gives us the minimum number of time dots
required to prevent conflicts.

Example with 6 classes:

(D))

ORI O ®

Can color these with 3 colors. If we had only two time dots then astudent is going to missa
find. Thered classes can berun at the sametime in one time dat, the orange at the sametime
in another, but if the green isrun a any of those two dots there will be a conflict.

Graph coloring a solution to many of these Congraint Satisfaction Problems.
Bin Packing:

Suppose we have an unlimited number of bins each of capacity 1, and n objects with Sizes s,
S2, ... Sy, Whereeach 5 is between 0 and 1.

Optimization Problem: Determine the smalest number of bins into which the objects can be
packed (and find an optima packing).

Decison Problem: Given, in addition to the inputs described, an integer k, do the objectsfit in k
bins?

Applications of bin packing include packing datain computer memories (e.g., fileson disk
tracks, program segments into memory pages, and fields of afew bits each into memory words)
and filling orders for a product (e.g. fabric or lumber) to be cut from large, Sandard-Sze pieces.

Knapsack Problem:

You are athief and have broken into abank. The bank has n objects of sizelweight s, 2, 3,
... Sy (such as gold, slver, platinum, etc. bars) and “ profits’ pl, p2, p3, ... py Where plisthe
profit for object s1. 'Y ou have with you a knapsack that can carry only alimited sizefweight of
capacity C.

Optimization Problem: Find the largest totd profit of any subset of the objects that fitsin the
knapsack (and find a subset that achieves the maximum profit).

Decison Problem: Given k, is there a subset of the objects that fitsin the knapsack and has a
total profit at least k (or equal to k)?

Many different problems fit the kngpsack problem, especialy in economy or optimizing the use
of resources with alimited capacity.

Subset Sum:

Thisisasmpler verson of the kngpsack problem. The input isapostive integer C and n
objects whose szes are positive integers sl, &2, ... Sw.

Optimization Problem: Among subsets of the objects with asum a most C, whét is the largest
subset sum?

Decison Problem: s there a subset of the objects whose sizes add up to exactly C? eg.
electord college problem
Ex. Given 135,284 and C=10

Possible subsets<= 10 are: 1,3,5 352 28 45 145 ec
Hamilton Path/Hamilton Circuit

A Hamilton path (Hamilton circuit or cycle) in agraph is apath (cycle) that passes through
every vertex exactly once.

Example of hamilton path:

O
O
S
No Hamilton path exists for this graph since we must revisit the same node up top twice:
O~<O
b No
H=0

Decison Problem: Does a given grgph have a Hamilton path?

Traveling Salesman Problem

Thisis harder than the Hamilton circuit problem. Instead of just finding a circuit, we also want
to find the circuit that has the lowest cost in aweighted graph. Imagineif we are atraveing
sdesman, and the vertices are cities to vist while the edges are roads connecting the cities.
Weights on the edges indicate time or distance to travel between cities. The sdlesman wantsto
vigt dl atiesin the least amount of time/distance. Other gpplications include routing in networks
or trucks for package ddlivery/pickup.

Optimization Problem: Given aweighted grgph, find a minimum weghted Hamilton circuit.

Decison Problem: Given aweighted graph and an integer k, is there a Hamilton circuit with
tota weight at most k?

P/NP Continued

The problems we have investigated so far are polynomia bound time O(rf) or tractable. We
can formdly define these problemsto bein aclassnamed “P’.

Definition: P isthe class of decison problemsthat are polynomia bounded.

Why define a polynomid time bound as a criteriafor an entire class? After dl, there are many

problemsin P and can be quite large. However:

1. Non polynomid time problems are intractable. Most researchers believe no polynomid
time dgorithms exist for many of these well defined non-polynomid dgorithms.

2. Polynomids have nice mathematica closure properties

3. P becomesindependent of aparticular model of computation

To show that an dgorithmisin P, we need to be able to come up with a solution to P that runs
in polynomid time.

Examples of dgorithmsin P. sorting, DFS, BFS

Definition: NP isthe class of decison problems for which a given proposed solution for agiven
input can be verified in polynomid time to seeif it redly isasolution. It does not say anything
about the time required to find the solution but only to verify if it is correct, hence NP stands for
Non-determinigtic Polynomia bounded agorithms.

To show that an dgorithm isin NP, we need to be able to show that a proposed solution can be
veified in polynomid time.

Examples of dgorithmsin NP: sorting, DFS, BFS, traveling sdlesman, kngpsack problem

In the knapsack problem, given k, isthere a subset of the objects that fitsin the knapsack and
has atota profit at least k? Given some solution, we can just add the weights together and see
if it fitsin the knapsack. Similarly, we can add the profits together and seeif the valueis at least
k. So verification of asolution is easy, and takes O(n) time.

Same for traveling salesman problem: Can add up weights on the graph and seeif the total
weight isat most k, and aso ensure that every city isvisited only once by just traversing the path
and remembering which cities were vidted.

Same for sorting problem: Not only can we find a solution in polynomia time, but verifying that
asequence is sorted takes only linear time to scan through each eement and ensure the next is
bigger than the previous.

Thisimpliestha P1 NP.

But does P=NP? Wedon't think so. No polynomia bound agorithms are known for many
problemsin NP (including knapsack, traveling salesman, subset sun). But we are not sure since
nobody has been able to prove that NP problems have a non-polynomia lower bound.

NP
?

We can actudly get adighter clearer picture by identifying another class of NP problems, NP-
Complete problems:

NP

@

NP Complete problems. The hardest decision problems of the class. If we can prove that if
there were a polynomia bounded algorithm for an NP complete problem, then there would be a
polynomia bounded agorithm for each problem in NP.

Before we define, need to define polynomial reducibility:

An dgorithm Al is polynomidly reducible to A2 if there exists a polynomid time transformation
from Alto A2. WedenotethisasAlu A2. In other words, if we have aproblem A1, then
in polynomid time we can make a mapping o that the agorithm A2 will solve problem Al i.e.
A2is“a least asshard” as Al

Definition: Andgorithm Al is NP-complete (NPC) if:
1. ItisinNPand

2. For every other dgorithm A21 NP, A2 Al. Inother words, every other NP problem
can be solved with dgorithm A1 by firgt doing a polynomia time mapping.

The process.

Given dgorithm A1
Given every problemin NP, cdl it { A2}, we can do a polynomid time transformation
to make its parameters “fit” our agorithm Al. Cdl thistime PL.
We can run A1l to get asolution
Polynomid time transformation of A1's answer mapping into { A2}, so we now have
answers
for {A2}. Cdl thistime P2

Totd runtime for other problemsin NPisP1L + T(A1) + P2
If Al runsin polynomid time, we can solve dl other problemsin NP in polynomid time!

If we have a single dgorithm A1 known to be NP-Complete, then:

1. For dl other Algorithms A2in NP, A2 Al
2. Thisimpliesthat to show anew agorithm A?, if we want to show it is NPC:

- We haveto show that A?isin NP (solution can be verified in Ptime)
- We have to show that for some other NPC algorithm A1, Alu A?.
By trangtivity, then dl other problemsinNPare 1 A?

Because {AllNP} 1 Al u A?

It isimportant to show that A1u A? and not A?u AL If our known NPC agorithm Al can
be polynomidly transformed into A?, then A? must be a leest as hard as A1. However, if we
show that A? can polynomidly be transformed into A1, this does't tell us anything about how
hard A? might be. We can solve an easy problem with a hard solution, but this doesn't say
anything about dl the other problemsin NP. But snce dl the other NP problems can be solved
with AL, if A1 could be polynomidly transformed into A7, then al other NP problems can be
solved in the time it takes to solve A? plus polynomid time.

This leads to the theorem that if any NP-Complete problemisin P, then P=NP.
The big quedtion:

We can show other dgorithms to be NP-Complete by showing an existing NPC problem can
be polynomialy reduced to the new agorithm. But how do we prove the firs NPC problem?

Answer: We will not prove, but the first problem proven to be NP-Complete is the circuit
satidfigbility problem. Thisisknown as Cook’s Theorem. Based on Cook’ s theorem, other
theorists were able to prove hundreds of other problems to be NP-complete.

Other NP-Complete Problems. Graph Coloring, Hamilton path, bin packing, subset sum,
knapsack, traveling sdesman.

Example

Assume we know that the directed Hamilton circuit problem is NP-Complete (it is). Show that
the undirected Hamilton circuit problem is dso NP-Compl ete.

1. Show that the undirected problem isin NP by verifying solution in polynomid time.

Answer: Given a proposed solution, we can sart at any vertex and follow the path, marking
each vertex aswe go. When we reach the origind vertex without having visited any marked
vertices, and after having visited every vertex, we are done and can output a YES. O(V)
time.

2. Show that the directed problem is polynomia reducible to the undirected problem; i.e. we
can turn the directed problem into an undirected graph and use that to solve the directed
problem.

Consder below:

Q/O
\O

<N

How can we turn this into an undirected graph and not lose information? Could just make
links bidirectiond, but then we can get circuits we couldn’'t get in the origina. Need to
preserve the direction.

Solution: Expand each node into three nodes, where the first node is an input node, the
middle atrangtion node, and the third an output node. The middle node ensures a path

within each node from 1-2-3 or 3-2-1 in sequence, otherwise we could potentidly visit
“hdf” anodea atime.

@

A
— 004

Note that dl nodes must be visited in sequence 1-2-3 or 3-2-1, since 3 and 1 are dways
connected, and 2 isdways in the middle. Thus any hamilton circuit discovered on the
undirected graph trandates back into the directed graph. We can do the transformation both
waysin O(V+E) time.

Another Example:

Show that the traveling sdlesman problem is NPC.

TSP: Given Graph G=(V,E) with edge codts, and target C, find atour of dl the vertices that
vigts each only once and has total edge cost <=C.

1. TSP can easly be verified to bein NP by traversing path and adding up cost to seeif itis
<=C.
2. Wewill show that the Hamiltonian Cycle problem 1 TSP.

Congtruct an instance of TSP
Form the complete graph G’ =(V,E') where E' =
10..if (i, Dt Ed

D=Ly it)i e

Consder:

=

We want to find out if there is ahamilton cycle using TSP. The instance of TSP congtructed
using the aove dgorithm is.

We can make the trandformation in polynomid time. If we run TSP on this problem, then if
thereisaHamilton cyclein the origind graph G, the TSP must return a path of total cost O (not
using any other links we added and we formed acycle) on graph G'.

Last Example:
Show that the knapsack problem isin NPC given that the Subset Sum problem is NPC.

The subset sum problemisgiven an array A (A1, A2 .. A,) and integer k. Isthere a subset of
A that equask?

The knapsack problem isgiven an Array A (A1, A2.. A,), each dement with weights W; and
vauesV;, isthere asubset of A that has total weight <C and total value =k?

1. Given asolution to kngpsack, we can easly verify if it isof value = k and weight <=C in
polynomid time,
2. Show that SSu Knapsack.

Set dl of the weights equd to zero, so our kngpsack is now unlimited in Sze. Let k remain the
same. The answer returned by the knagpsack problem will be the answer to the subset sum
problem since the knapsack problem is essentidly the subset sum problem with the extraweight
condition (now removed).

