CHA11
Models of Parallel Computation

So far in classwe ve primarily been limiting ourselves to the RAM (random access)
machine. In this machine there is one processor with M memory locations that can each
be individudly accessed in O(1) time.

Now let’s consider the PRAM, or Pardld Random Access Machine. Thisisthe most
widdy utilized pardlel model of computation. When it was developed, the hope was that
it would do for paralel computing what the RAM mode did for sequentia computing —
become a platform upon which people could design theoretical dgorithms that would
behave as predicted by the asymptotic anadyss on red computers.

Unfortunately, this has not quite been the case. The problem isthat the PRAM ignores
communication issues. Thisisgood in the sensethat it dlows the user to focus on the
potentia pardldism available. However it isbad in the sense that it can often be difficult
to map an actua physica machineto a particular PRAM dgorithm. Thisis not the case
for the RAM modd, whereiit is easy to map aphysicad machineto aRAM dgorithm.

The PRAM modd has the following characteridtics

Processors.  There are n processors, Py, P2, up to P, where each isidentical to aRAM
processor.

Memory: Thereisacommon, globa memory available. If processorswish to
communicate, they do so viacommon memory — there isno specid communications
channd between processors. Sometimes thisis called ablackboard. It istypicaly
assumed there are m > n memory locations.

Memory accessunit:  The memory access unit of the PRAM issmilar to the RAM in
that it takes O(1) time to access any individua memory location for any processor.

The next question that should arise is how memory data access conflicts are resolved.
We will probably have difficultiesif multiple processors try to smultaneoudy write to
the same memory location.

Two basic modes exigt for handling read conflicts:

1) Exclusve Read (ER). Only one processor is alowed to read from agiven
memory location during acyde. Thatis, it isconddered anillegd indruction
if a any point in the execution, two or more processors attempt to read from
the same memory location.

2) Concurrent Read (CR): Multiple processors are alowed to read from the
same memory location during aclock cycle.



Write conflicts are more complex, and avariety of options exist:

1) Exclusve Write (EW): Only one processor is alowed to write to a given memory
location during aclock cycle. It is consdered an error if two or more processors
attempt to write to the same memory location a once.

2) Concurrent Write (CW): Multiple processors are dlowed to write to the same
memory location during the same clock cycle. How should one resolve conflicts?
A variety of schemes have been proposed;

a. Priority CW : Some priority is given to each processor in advance (eg. its
processor D number) and that with the highest priority succeeds. Note
there is no feedback to the processors regarding success or failure of its
write.

b. Common CW: Thismodd assumesthat dl processors attempting to write
to the same memory location are writing the same vaue.

c. Arbitrary CW: Some processor will succeed in writing, but it is arbitrary
which is successful.

d. Combining CW: When processors are writing, somehow the result of all
of the writesis combined using some function (e.g.. SUM, AND, MIN,
etc.)

Popular PRAM modéds are:

1. CREW (Concurrent Read Exclusve Write). Thisis one of the most popular
because it maps to physical architectures well.

2. EREW (Exdusve Read Exclusve Write). Thisisthe most redtrictive modd,
but usudly it is desired to alow concurrent reeds.

3. CRCW (Concurrent Read Concurrent Write). When thisis used, the details of
the concurrent write must be specified.

Some Simple PRAM Algorithms

Perhaps the smplest agorithm isto broadcast a piece of information. While this sounds
trivid, we need some semi- sophisticated methods to broadcast efficiently on some
architectures. In the broadcast problem, some processor contains a piece of information
in one of itsregisters or its cache and it wants to send thisinformation to dl other
processors.

Let'sgtart with a CR PRAM machine. A smple dgorithm to broadcast is:
CR PRAM broadcast
1. Processor FI] contains the data, d, to broadcast. It writesd from register
R[l,J] to shared memory location X
2. Inpardld, all processors read d from X



Step 1 requires O(1) time while step 2 aso requires O(1) time because the modd has the
concurrent read property. Thistakes atotal of O(1) time regardless of the number of
Processors.

Now consider the same problem on aER PRAM. We need anew drategy since dl
processors can't read the same memory location.

ER PRAM Broadcast
1. Processor P[] contains the datad, and writesit from register R[1,J] to memory
location M[1]
2. Forl=1tologndo .
In paralld, processors Py wherej 1 {1, 2,4, .... 2"} do
Read d from M[J] _
If j + 2" <= nthen writed to M[j+2']

Thisdgorithm is an example of arecursive doubling procedure, in which during each
step of the dgorithm, the number of copies of theinitid dataitem has doubled. Initidly,
thereisone copy of thedataat M[1]. Thisisread by processor 1. Processor 1 then
writesthe datato M[2]. In the next iteration, processor 1 and processor 2 read the data
smultaneoudly. They then copy the datato M[3] and M[4] — the number of copies have
been doubled. In the next iteration, processors 1-4 will copy the data for processors 5-8.

Since each step of reading and writing takes O(1) time, regardless of the number of
processors, this agorithm with n processors can perform the broadcast in log time,
O(lgn).

Next let'slook a a PRAM agorithm to caculate the minimum of an array of vaues.
The array is of Sze n, and we have at least n processors.

PRAM Min Algorithm

1. Copy aray to atemporary array, T

2. Forl=1tologp ndo _
In parallel, Processor P, wherej 1 {1, 2,4, .... 2°%"} do
a ReadT[2j-1] and T[2]]
b. Write min(T[2j-1],T[2j]) to T[j]

3. If desired, broadcast T[1] asthe min

This processis more easily seen on an example. We end up with essentially a bottom-up
tree, reducing the number of candidates in haf each step of the way:



The find answer, the min, is stored in T[1].

1 2 3 4 5 6 7 8

T.[ 3 51 8 4 2 7 6 ]

Iy =
T:[3 126 4276 ]
ya

12264276 ]
T:[12 26 427 6 ]

Step 1 of the dgorithm takes constant time since each processor can copy a unique
dement intime O(1). If you didn’t care about preserving the input, then of coursethis
step could be skipped. Step 2 requires O(Ign) time to perform the bottom-up tree
operations. Each leve of thetreeis performed in pardld. The entire dgorithm then
takes O(Ign) time.

v
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What if we didn’t have n processors available for the previous problem? (Actualy we
could get by with /2). For example, consder a case where the array is of sze P where P
>n. Themost common solution isto break the problem up so that each processor works
on asection of the array of sze P/n and findsthe min inits section. We have now

reduced the problem to asize of n and can run the prior agorithm to find the min (usng
n/2 processors).

1 2 3 4 5 6 7 8

T.[3 518427 6]
N / J/

P1 =)
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T[ 1226 4276 ]

/

T[ 1226 4276 ]



The runtime in this more arbitrary case is now limited by the RAM-based sequential
search for the min and takes time O(P/n), where P isthe Size of the array and nisthe
number of processors. Note that since the number of processorsis typicaly constant,
thisisjust O(P) time — usudly expressed as O(n) where n would be the size of the array
(not to be confused with the number of processord) So interms of Big-O, thereisredly
no asymptotic gain with the pardld dgorithm verson aRAM agorithm, unless we have
enough processors.

We have asmilar stuation if we follow the same strategy to creste a PRAM to search an
ordered array using binary search:

CRCW PRAM for an Ordered Array
N processors, combining operator of Minimum
Input: ordered array X, where X rangesfrom 1 .. m and asearch vaue S
1. Inpadld, every processor initidizes success = infinity
2. Inpardld, every processor | conducts abinary search on

Lowindex = ((I-1)*m/n) + 1

Highindex =(I*m/n)

If binary search is successful, successis st to the index the value was found

3. Inpardld, every processor saves success to memory location Z

Since we are combining usng MIN, if the vaue was found, a non+infinity isstored in Z
holding the index of thefirst occurrence of Sin X. If the value was not found, infinity is
dored in Z.

For example: Given m=9 and n=3
P1 getsindex 1to 3
P2 getsindex 4t0 6
P3 getsindex 7t0 9

1 2 3 4 5 6 7 8 9
X:[ 1 56 8 14 22 37 62 94 ]
N ~ ) N ~ ) )
PJ\ P2 P3
14

For the runtime, each processor does binary search on alist of 9zem/n.  The resulting
runtime isthen O(Ig(m/n)). Once again, if nisa congtant for the number of processors,
we are running in time O(lgm) which is the same asymptotic runtime as a RAM machine.



