C442
Comer Networking API
Chapter 3

Chapter three of the textbook presents an API to perform network programming inthe C
language. While this chapter does not cover everything about network programming, it
does demongtrate an important idea:

A programmer can create Internet gpplication software without
understanding the underlying network technology or communication
protocols.

In fact, amgority of network gpplications are now written at such aleve that the actua
networking routines are abstracted out (e.g., writing XML documents or .NET framework
services).

The AP in this chapter iswritten usng Sockets. We will examine how sockets work in
an upcoming lecture.

Networ k Communication

Recdl the layering model of communicationstoday. The gpplications redly don't need
to be aware of the low-leve detalls of the network, only with the interface to the next
level down. Applications are redly just concerned with talking to other gpplications on
the receiving Sde. In turn, the network neither generates nor understands the actual
content of the data being sent.

Client-Server computing

How do programs find one another in a network like the Internet? Firgt, one application
must start and wait for contact. Then, the second application triesto contact it. The
second gpplication must know the location of the first gpplication. The gpplication thet is
waiting for contact is caled aserver and the program that initiates contact is cadled a
client. Sofor example, aweb server is aprogram waiting for aweb browser (client) to
contact it.

In the Internet, alocation isloosdy specified by apar of identifiers:
(Computer, Application)

Computer identifies the computer, e.g., the hostname or |P address.
Application identifies the particular gpplication on that compuiter, e.g. the port number

To recap, the basic steps involved are:

o

Server gpplication starts first and waits for contact from a client

2. Client contacts the server by specifying itslocation and requests a communication
channd be set up

The client and server exchange messages using some protocol

The client and server each send an “end of file’ message to terminate
communicetion

> w

All of these seps are alittle hairy to perform directly using sockets (we'll look at it
though!) The whole processis made a bit easer by using the API library provided by
Comer.

Comer Networking Application Program Interface (CNAPI)

The APl usage generally proceeds as shown below for a client and server:

Server Client

await_contact make_contact

l l

recv or recvin «—— send

| |

send < » recv or recvin
send eof send eof

Here are details on each function. To usethe library, ensure that <cnaigpi.h> isincluded
as a header file, and the linker settings can find the library object files (thisisdonein the
Makefilein Unix, and in the Visud Studio project in Windows).

Data Types

appnum - anumber used to identify an application (port number, 2 bytes)
computer - anumber used to identify a computer (1P address, 4+ bytes)
connection - avaue used to identify the connection between a client/server

(asocket, which binds the computer and appnum)
appname_to_appnum
appnum appname_to_appnum(char *a)

This function takes an ASCII vaue of an gpplication, and returns the associated number
for thet gpplication (if it exists). —1 isreturned in the event of falure. For example:

aopnum x = gppname_to_appnum(“www”);

This assigns the value 80 to x, since 80 is the port number associated with the web.

await_contact
connection await_contact(appnum a)
This cdl takes one argument of type appnum and returns a vaue of type connection.
The argument is a number that specifies the port or the gpplication on the server. If this
cdl falls, the connection vaue returned is—1. Connection will be used to send
subsequent data.
Ex
aopnum X = appname_to_appnum(“www”);
connection c1 = await_contact(appnum);
connection c2 = await_contact(8000); /I Use port 8000 to listen on
chame_to_comp
computer cname_to_comp(char *c)
This cal takes an ASCII argument that represents the application-layer name of the

computer to contact (e.g., www.math.uaa.a aska.edu) and returns the network ID of that
computer (i.e, the IP address). A negative vaueis returned in the event of failure.

Ex:

computer comp = cname_to_comp(* echidna.math.uaa.a aska.edu”);

make_contact
connection make_contact(computer ¢, appnum @)

Thisfunction is called by the client to initiate contact with aserver. It requires that the
computer and the gpplication number be known. The client will use the return vaue,
connection, to transfer data. In the event of failure, the connection vaue returned is
negative.

Bx:

computer comp = cname_to_comp(* echidnamath.uaa.aaska.edu’);
appnum app = 8045;
connection conn = make_contact(comp, app);

send
int send(connection con, char *buffer, int length, int flags)

Thiscdl sendsdata. It requires a connection, an address for the buffer of which dataisto
be sent, the length of the datain bytes, and the fourth argument is zero for normal

transfer. Send returns back the number of bytes actudly sent, or a negative vaue if there
was an error.

Ex:

computer comp = cname_to_comp(* echidnamath.uaa.alaska.edu’);
appnum app = 8045;

connection conn = make_contact(comp, app);

char buffer[100];

srepy(buffer,” Hello therel\n”);

send(conn, buffer, srlen(buffer), 0);

int recv(connection con, char *buffer, int length, int flags)

Both clients and servers use recv to access data that arrives across the network. The first
argument specifies the connection that was created. The second is the buffer address
where dataisto beretrieved. Length isthe maximum size of data that should be placed
in the buffer. The flags argument is normaly O.

Recv returns the number of bytes placed in the buffer, or zero to indicate that an end-of -
file has been recelved, or a negative valuein case of an error.

Bx:

int numbytes,

char buffer[100];

connection conn = await_contact(8000);
numbytes = recv(conn, buffer, 100, 0);

Thiscdl isblocking; the program will wait at this ingtruction until datais received.
recvin
int recvin(connection con, char *buffer, int length)

recvin functionsjust like recv, except it will repeatedly cal recv until an entire line of
text has been read.

Thiscdl isblocking; the program will wait & this ingtruction until datais received.

send_eof
int send_eof (connection con)

This function sgnds that the sender is done tranamitting data and wants to close the
connection by sending an end of file character. On the receiving Sde, recv will return a0
when the EOF isreceived. If an error occurred, this function returns a negative value.

Sample Programs

Hereis code for a server that just echoes back whatever is sent to it, until an eof is
received:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <cnai api . h>

#defi ne BUFFSI ZE 256

int main(int argc, char *argv[])
{

connection conn;

int |en;

char buf f [BUFFSI ZE] ;

if (argc !'= 2) {
printf(“Usage: % <appnune\n”, argv[O0]);
exit(l);
} /* First parameter = port or appnum */
conn = await_contact((appnum atoi(argv[1]));
if (conn < 0) exit(1l);
len = 1;
while (len > 0) {
len = recv(conn, buff, BUFFSIZE, 0);
if (len > 0) {
/* dangerous, buff is not necessarily a nul
term nated string! */
/* There may also be CR's or LF s at the end! */
printf(“%: %", buff);
send(conn, buff, len, 0);

}

send_eof (conn) ; /* Signal other side we’'re done */
return O,

}

Todo: Try thiscode and execute with some random port number (greater than 1024),
and then telnet to that machine and port from another machine:

echoserver 5031
From another machine:
telnet <echosarver’ s machine> 5031

Try typing short text, followed by long text, and you should see that:
On the recaiving Sde, not anull term (in fact it could be binary data)
We might have carriage returns and linefeeds for text data, warning if
you do any string comparisond

For gtring data, | find it useful to sometimes strip out ¢’ s and If’ s from the end and
convert them to null:

void stripcrlf(char *s, int |en)
{
int i;
for (i=0; i<len; i++) {
it ((s[i]=="\n") [| (s[i]=="\r"))
s[i]="\0";
}

In while loop:
if (len > 0) {
/[* stripcr’s and If's if we knowit's text data */
stripcrlf(buff, len);
printf(“%s\n”, buff);
send(conn, buff, len, 0);

Hereis code for aclient that can be used with echoserver. It just connectsto the
destination, gets input from the user, and sendsit on. This verson is somewhat stripped
down from the book’s version (it does't so much error checking and other niceties).

#include <stdlib. h>
#i ncl ude <stdio. h>

#i ncl ude <cnai api . h>
#def i ne BUFFSI ZE 256

i nt

{

mai n(int argc, char *argv[])

conmput er conp;

connection conn;

char buf f [BUFFSI ZE] ;
appnum app;

i nt expect, received, len;

if (argc '= 3) {

printf(“Usage: % <conpnanme> <appnun»\n”,

exit(1l);
}

/* First paranmeter should be host nanme */
conmp = cname_to_conp(argv[1]);
/* Second paraneter should be app num */
app = (appnum atoi(argv[2]);
/* make contact */
conn = nake_contact (conp, app);
if (conn < 0) {
printf(“Error!\n”);
exit(1l);

argv[0]);

printf(“Enter data> “);
fflush(stdout); /* show pronpt w thout new ine */

/* Get input fromuser, send to server, receive
reply fromserver, display to user, repeat. */

while ((len = readl n(buff, BUFFSIZE)) > 0) {

/* Send what user typed in */

send(conn, buff, len, 0);

printf(“Received> “);

fflush(stdout);

/* Wait for reply */

expect = len;

recei ved = 0;

while (received < expect) {
len = recv(conn, buff, BUFFSIZE, 0);
if (len <0) { /* Server quit? */

send_eof (conn); exit(1);

}

/* Ensure null term nate */

/* DANGEROUS SHORTCUT — COULD OVERRUN BUFFER */
buff[len]="\0";

printf(“%s”, buff);

recei ved += | en;

}
printf(“\nEnter data> “);

fflush(stdout);
}

send_eof (conn);
return(0);

Severd details make this a bit more complicated than we might like. Firgt, the client cdls
the readin function to read aline of input. The fflush cal ensures the text from the printf
will be displayed on the screen

The most important detail is notice the loop we made for receiving data. We do not
merely issue one cdl to recv each time it receives datafrom the server. That is, asingle
recv cal may not get al the data sent in asend function call. The dlient enter aloop that
repestedly callsrecv until it has received as many bytes as were sent:

A recelver cannot assumethat datawill arrivein the same size
pieces asit was sent; a call to recv may return less data than was
sent in call to send.

We Il explain why thisis|later (basicaly packets may shrink in Sze asthey go through
the network).

Let'slook at one find gpplication, a super-smple and stripped down web server. Firdt, it
is aworthwhile exercise to run echoserver on some port, and then try to accessit with a
web browser. (Try using recvin instead of recv in echoserver, and print out the results
with newlines and cr’ s stripped):

eg.
echoserver 8032

And then from aweb browser, try to access http://machine:8032

Y ou should see what the browser sends to the server upon connection, something like the
following:

GET /HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept- Encoding: gzip, deflate

User-Agent: Mozillal4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Host: www.math.uaa.alaska.edu:8032

Connection: Keep-Alive

ThisisHTTP header information. It indicatesthe HTTP protocol, user agent, and other
data, like cookies and data the browser can accept. Thereisablank line at the end,
ggnding the end of data from the browser.

At this point the web browser iswaiting for datato be returned to it. Hereisatypica
response from aweb server:

HTTP/1.1 200 OK

Date: Fri, 07 Sep 2001 08:20:55 GMT

Server: Apache/1.3.19 (Unix) Debian/Alpha PHP/4.0.5
Last-Modified: Thu, 17 May 2001 01:21:39 GMT
ETag: "3886d- 1e5b-3b0327a3"

Accept-Ranges. bytes

Content-Length: 7771

Connection: close

Content- Type: text/html; charset=is0-8859- 1

<IDOCTYPE HTML PUBLIC "-//W3C//IDTD HTML 4.01 Trandtiona//EN">
.. HTML follows

The top part are more HT TP headers, specifying the size of data, type of data, etc.
Let's make asmple web server that just always spits back out the same data. We'll
fudge abit and just use the basc HTTP headers. Our web server will just wait for a
connection. When it gets one, it will read input until it reaches ablank line, discarding

the data (this is the HTTP header info from the browser). Then we'll spit out asmple
HTTP header, followed by HTML data:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

#i ncl ude <cnai api . h>
#def i ne BUFFSI ZE 256

/*

i nt

{

}

Insert stripcrlf function here, defined earlier */

mai n(int argc, char *argv[])

connection conn;
int len;
char buf f [BUFFSI ZE] ;

if (argc !'= 2) {
printf("Usage: % <appnunm\n", argv[O0]);
exit(1l);

}

conn = await_contact ((appnum atoi(argv[1]));

if (conn < 0) exit(1);

/* Wait until we get a blank line to continue
signals client browser waiting for data */

strcpy(buff,".");
while (strlen(buff)>0) {

I en = recvl n(conn, buff, BUFFSIZE, 0);

if (len > 0) {

stripcrlf(buff, len);

}
}
/* Make a generic HITP Header */
strcpy(buff,"HTTP/ 1.1 200 OK\n");
send(conn, buff, strlen(buff), 0);
strcpy(buff,"Content-Type: text/htm\n\n");
send(conn, buff, strlen(buff), 0);

/* Send fixed HTM. data */

strcpy(buff, "<h2>Some HTM. Title</h2>");
send(conn, buff, strlen(buff), 0);
strcpy(buff,"<p><a href=http://ww. yahoo. conmrYahoo! </ a>");
send(conn, buff, strlen(buff), 0);

send_eof (conn); /* Signal other side we're done */

return O;

Inarea web server, we wouldn't be ignoring the heeders, and we' d likely be reading
from the file system to retrieve the HTML page requested (or generate it by executing
some CGI or script program).

