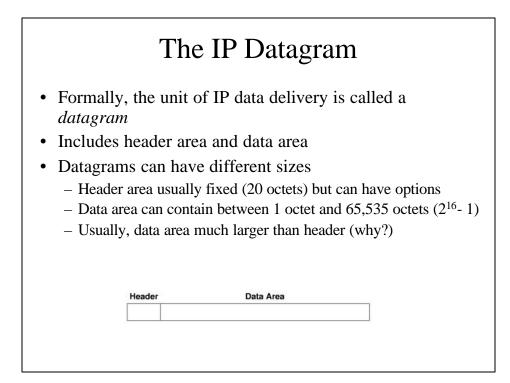
# IP Routing, Format, Fragmentation

Chapters 20-21, 23

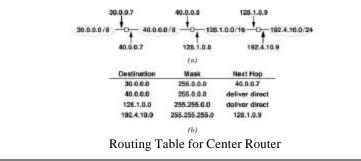

#### IP

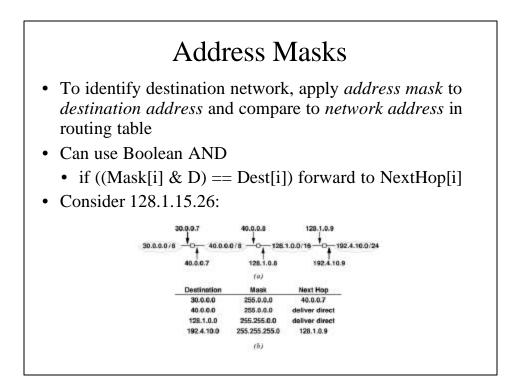
- IP is connectionless in the end-to-end delivery
  - Data delivered in datagrams (packets / frames), each with a header
- Combines collection of physical networks into single, virtual network
- Transport protocols use this connectionless service to provide connectionless data delivery (UDP) and connection-oriented data delivery (TCP)
  - But this is all done on top of IP, which is connectionless, so we'll need to implement quite a bit of extra logic in TCP to get the connection-oriented characteristics out of an underlying connectionless medium

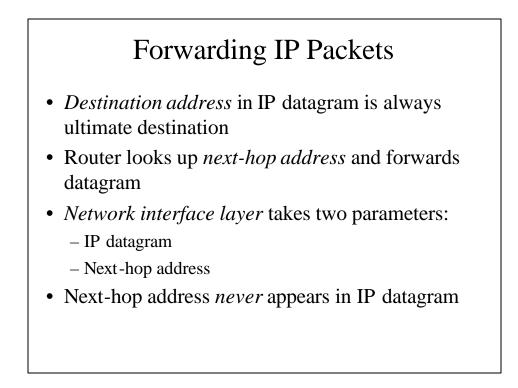
# Virtual Packets

- Packets serve same purpose in internet as frames on LAN
- *Routers* (or *gateways*) forward packets between physical networks
- Packets have a uniform, hardware-independent format
  - Includes header and data
  - Why are these "virtual?" Because we would like a packet to be capable of crossing multiple networks, where networks could use different types of technologies (e.g. Token Ring, Ethernet)
- The virtual packet is implemented by encapsulating it in hardware frames for delivery across each physical network

- Ensures universal format across heterogenous networks

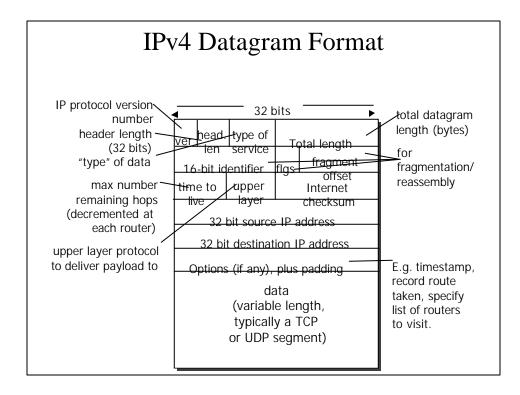




### Forwarding Datagrams


- The header contains all the information needed to deliver a datagram to a destination *computer* 
  - Destination address
  - Source address
  - Identifier
  - Other delivery information
- Routers examine the header of each datagram and forwards the datagram along a path to the destination
  - Use routing table to compute next hop
  - Update routing tables using algorithms previously discussed
    - Link state, distance vector, manually

## Routing Tables and Address Masks

- In practice, destination stored as network address
- Next hop stored as IP address of router
- Address mask defines how many bits of address are in prefix
  - Prefix defines how much of address used to identify network
  - E.g., class A mask is 255.0.0.0
  - Used for subnetting








# IP is Best Effort Delivery

- IP provides service equivalent to LAN
- Does *not* guarantee to prevent
  - Duplicate datagrams
  - Delayed or out-of-order delivery
  - Corruption of data
  - Datagram loss
- *Reliable delivery* provided by *transport layer*
- *Network layer* IP can *detect* and *report* errors without actually *fixing* them



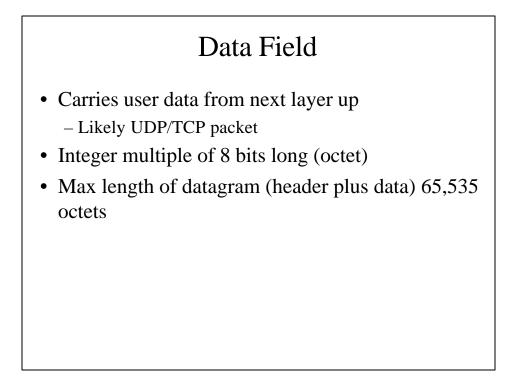
# Parameters (1)

- Source address
- Destination address
- Upper Layer Protocol
  - Recipient e.g. TCP
- Type of Service
  - Specify treatment of data unit during transmission through networks
  - Ignored by many routers
- Identifier
  - Uniquely identifies PDU for a particular sender/receiver
  - Needed for re-assembly and error reporting
  - "Send" only; i.e. in sending a data packet, not used for Deliver or "ACK" mode
  - Fragmentation dropped in IP6

#### Parameters (2)

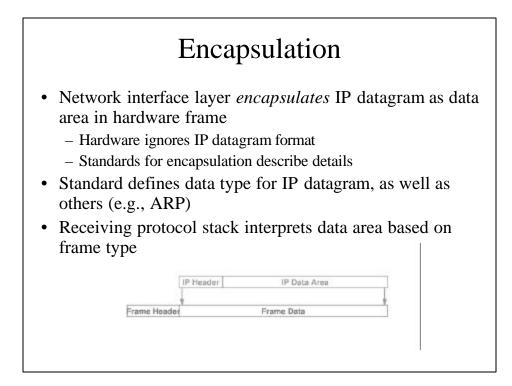
- Flags (3 bits)
  - First: Is this data fragmented?
  - Second: Are we allowed to fragment the data?
    - If not, may not be possible to deliver
  - Third: not used
- Time to live
  - Prevent datagram from traveling forever by decrementing each hop
- Header length
  - In groups of 4 bytes
- Total length
  - In bytes, includes header and data
- Option data
- User data

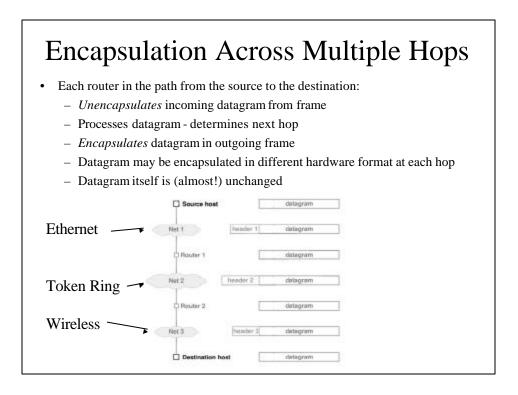
## Type of Service

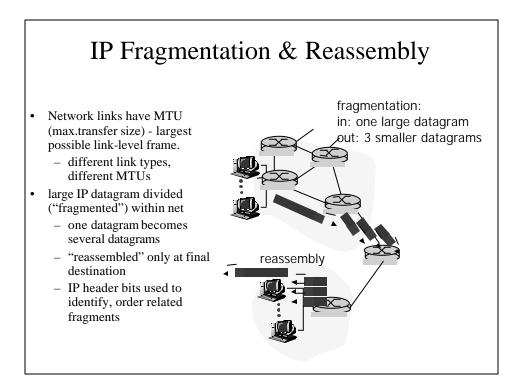

- Might be useful to differentiate traffic, e.g. ICMP vs. data, or real-time data vs. non-real time
- Precedence
  - 8 levels
- Reliability – Normal or high
- Delay
  - Normal or low
- Throughput – Normal or high
- These are often ignored by routers

# Options

- Meant to be used rarely. Way to extend the IP protocol with a variable number of options. Dropped in IPv6.
  - Security
  - Source routing
  - Route recording
  - Stream identification
  - Timestamping
- Since this is optional, it means headers can be of variable length
  - This is why we need the Header Length field
  - If an IP datagram has no options, H-LEN = 5
  - Header with 96 bits of options has H-LEN = 8
  - If options don't end on a 32-bit boundary, padding (all zero's) added to make this a multiple of 32 bits
    - See why H-LEN is in groups of 32 bits?


# Datagram Lifetime


- Datagrams could loop indefinitely
  - Consumes resources
  - Transport protocol may need upper bound on datagram life
- Datagram marked with lifetime
  - Time To Live field in IP
  - Once lifetime expires, datagram discarded (not forwarded)
  - Hop count
    - Decrement time to live on passing through a each router
  - Time count
    - Need to know how long since last router

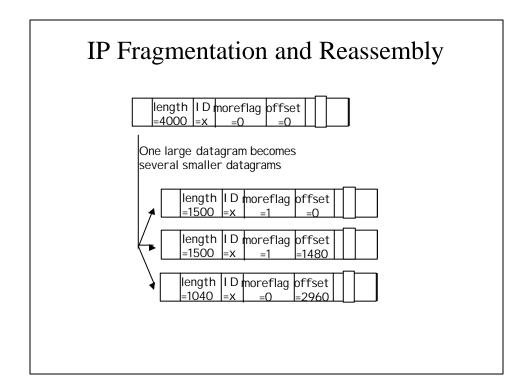


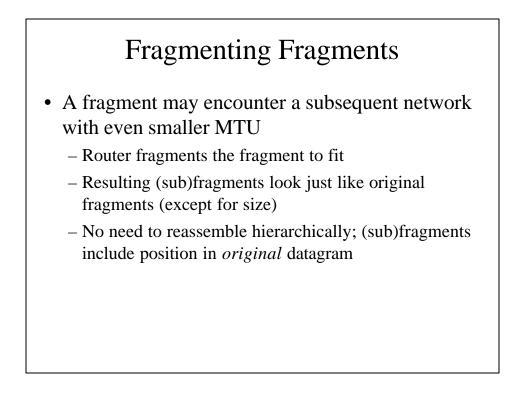

# Datagram Transmission and Frames

- IP internet layer
  - Constructs datagram
  - Determines next hop
  - Hands to network interface layer
- Network interface layer
  - Binds next hop address to hardware address
  - Prepares datagram for transmission
- But ... hardware frame doesn't understand IP; how is datagram transmitted?









## Fragmentation and Re-assembly

- Different packet sizes
- When to re-assemble
  - At destination only
    - Results in packets getting smaller as data traverses internet
  - Why not re-assemble at intermediate routers?
    - Need large buffers at routers
    - Buffers may fill with fragments
    - All fragments must go through same router - Inhibits dynamic routing
    - Routers have enough work to do already without having to reassemble stuff

#### **IP** Fragmentation

- IP re-assembles at destination only
- Uses fields in header
  - Data Unit Identifier (ID)
    - Identifies end system originated datagram if coupled with:
      - Source and destination address
      - Protocol layer generating data (e.g. TCP)
      - Identification supplied by that layer
  - Data length
    - Length of user data in octets
  - Offset
    - Position of fragment of user data in original datagram
    - In multiples of 64 bits (8 octets)
  - *More* flag
    - Indicates that this is not the last fragment

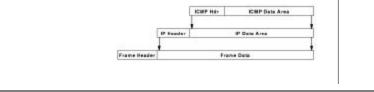




# Dealing with Failure

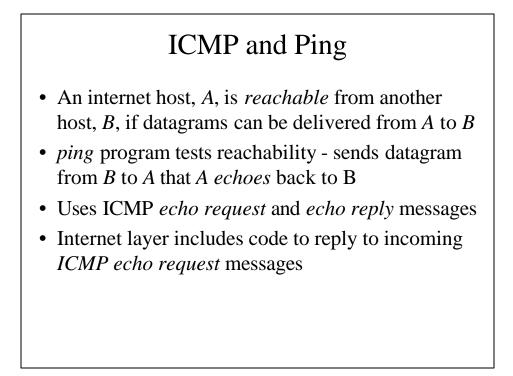
- Re-assembly may fail if some fragments get lost
- Need to detect failure
- Re-assembly time out
  - Assigned to first fragment to arrive
  - If timeout expires before all fragments arrive, discard partial data

#### **Error Control**


- Not guaranteed delivery
- Router should attempt to inform source if packet discarded
  - e.g. for time to live expiring
- Source may modify transmission strategy
- May inform high layer protocol
- Datagram identification needed
- Destination doesn't ACK or NAK if checksum fails, no retries, best-effort like Ethernet

## Flow Control

- Allows routers and/or stations to limit rate of incoming data
- Limited in connectionless systems
- Send flow control packets
  - Requesting reduced flow
- e.g. ICMP


#### ICMP

- Internet Control Message Protocol
- RFC 792
- Transfer of (control) messages from routers and hosts to hosts
- Feedback about problems
  - e.g. time to live expired, destination unreachable (e.g. no ARP reply), checksum fails (header only!), no route to destination, etc.
- Considered "part" of IP, but it is really a user of IP
  - Encapsulated in IP datagram
  - Not reliable
  - ICMP messages sent in response to incoming datagrams with problems
  - ICMP message **not** sent for ICMP message



### ICMP: Internet Control Message Protocol

| <ul> <li>Used by hosts, routers, gateways to communication network-level information <ul> <li>error reporting:</li> <li>unreachable host, network, port, protocol</li> <li>echo request/reply (used by ping)</li> </ul> </li> <li>ICMP message: type, code plus first 8 bytes of IP</li> </ul> | <u>Type</u><br>0<br>3<br>3<br>3<br>3<br>3<br>4<br>8<br>9<br>10<br>11 | Code<br>0<br>1<br>2<br>3<br>6<br>7<br>0<br>0<br>0<br>0<br>0<br>0 | description<br>echo reply (ping)<br>dest . network unreachable<br>dest host unreachable<br>dest protocol unreachable<br>dest port unreachable<br>dest network unknown<br>dest host unknown<br>source quench (congestion<br>control - not used)<br>echo request (ping)<br>route advertisement<br>router discovery<br>TTL expired |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 1                                                                                                                                                                                                                                                                                            | 10                                                                   | •                                                                | 5                                                                                                                                                                                                                                                                                                                               |
| datagram causing error                                                                                                                                                                                                                                                                         | 12                                                                   | 0                                                                | bad IP header                                                                                                                                                                                                                                                                                                                   |



## **ICMP** and Traceroute

- List of all routers on path from *A* to *B* is called the *route* from *A* to *B*
- *traceroute* uses UDP to non-existent port and TTL field to find route via *expanding ring* search
- Sends ICMP echo messages with increasing TTL
  - Router that decrements TTL to 0 sends *ICMP time exceeded* message, with router's address as source address
  - First, with TTL 1, gets to first router, which discards and sends time exceeded message
  - Next, with TTL 1, gets through first router to second router
  - Continue until message from destination received
- *traceroute* must accommodate varying network delays
- Must also accommodate dynamically changing routes

#### ICMP and MTU Discovery

- Fragmentation should be avoided for optimal performance
- How can source configure outgoing datagrams to avoid fragmentation?
- Source determines *path MTU* smallest network MTU on path from source to destination
- Source *probes* path using IP datagrams with *don't fragment* flag
- Router responds with *ICMP fragmentation required* message
- Source sends smaller probes until destination reached

#### **ICMP** and Redirect

- Default route may cause *extra hop* 
  - Host A is sending a packet to Host B. Host A's default IP router is router R1. Host A forwards the packet destined for Host B to its default router R1.
  - R1 checks its routing table and finds that the next hop for the route to the network for Host B is router R2.
  - If Host A and R2 are on the same network that is also directly attached to R1, an ICMP Redirect message is sent to Host A informing it that R2 is the better route when sending to Host B.
  - Router R1 then forwards the IP datagram to R2.
  - Host A adds a host route to its routing table for Host B's IP address with router R2's IP address as the forwarding address. Subsequent datagrams from Host A to Host B are forwarded by means of router R2.