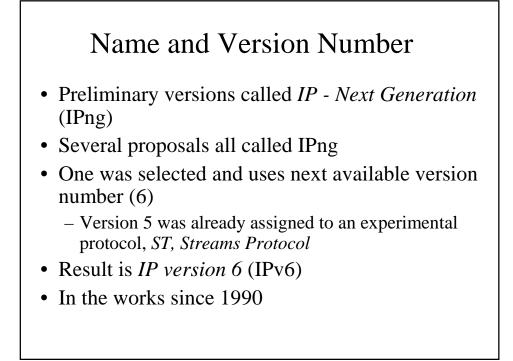
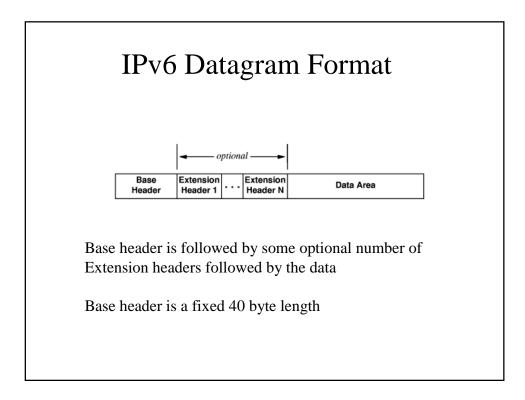
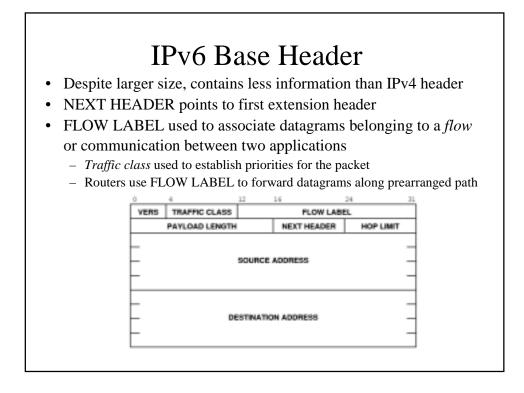
IPv6 and DNS

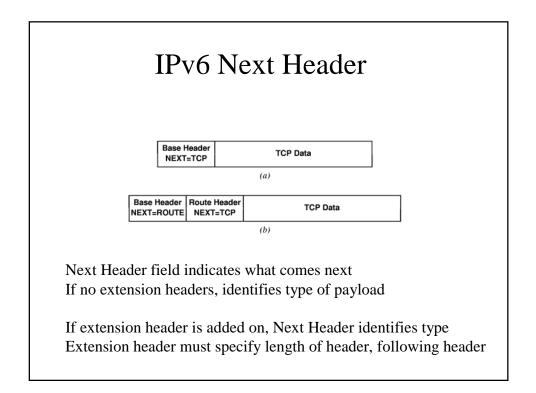

Chapters 22,29 CSA 442

IPv6 – The Future of IP

- Current version of IP version 4 is over 20 years old
- IPv4 has shown remarkable ability to move to new technologies
 - IP has accommodated dramatic changes since original design
 - Basic principles still appropriate today
 - Many new types of hardware
 - Scaling from a few tens to a few tens of millions of computers
- But, as with any old technology, it has some problems
- IETF has proposed entirely new version to address some specific problems


Motivation for Change

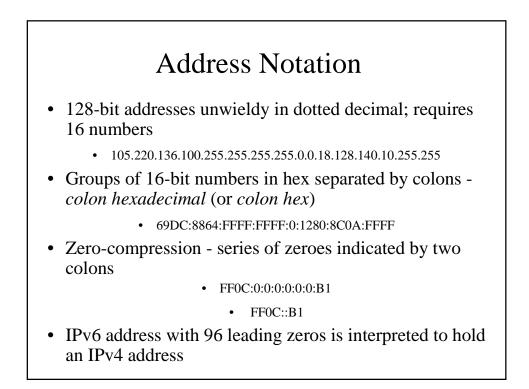

- Address space
 - 32 bit address space allows for over a million networks
 - But...all that is left is Class C and too small for many organizations
 - Predictions we would have run out of IP addresses by now
 - Besides, how will we network all our toasters and cell phones to the Internet?
- Type of service
 - Different applications have different requirements for delivery reliability and speed ; i.e. real time data, quality of service
 - Current IP has type of service that's not often implemented
- Multicast



New Features of IPv6

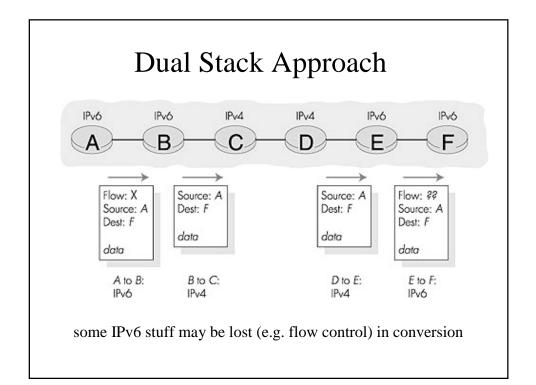
- Address size IPv6 addresses are 128bits
 ~3*10³⁸ possible addresses in theory
- Header format entirely different
- Extension headers Additional information stored in optional extension headers, followed by data
 - Makes the protocol extensible new features can be added more easily
- Support for audio and video flow labels and quality of service allow audio and video applications to establish appropriate connections

Why Multiple Headers?

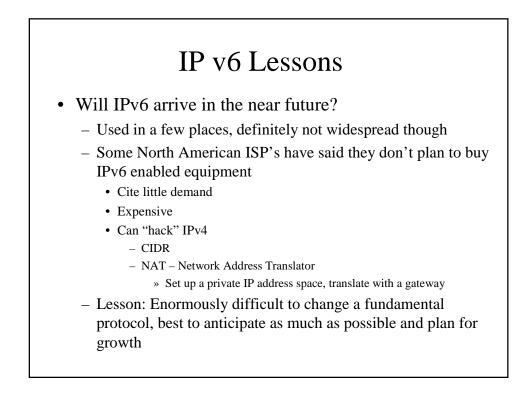

- Efficiency header only as large as necessary
- Flexibility can add new headers for new features
- Incremental development can add processing for new features to testbed; other routers will skip those headers

Other Changes from IPv6

- Checksum: removed entirely to reduce processing time at each hop
 - Depends on checksum for Ethernet, TCP
- Fragmentation only allowed at source
 - No fragmentation at intermediate routers
 - Router will drop, send error message to source telling it to send a smaller packet, source must find smallest MTU of intermediate networks (*path MTU discovery*)
- ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - Multicast group management functions


Addressing

- 128-bit addresses
- Includes network prefix and host suffix, just like IPv6 but bigger address space
- No address classes prefix/suffix boundary can fall anywhere as in CIDR
- Special types of addresses:
 - *unicast* single destination computer
 - multicast multiple destinations; possibly not at same site
 - *cluster* collection of computers with same prefix; datagram is delivered to one out of cluster
- Cluster addressing allows for duplication of services, e.g. specify a cluster of servers providing the same service, but we just want at least one of them to work



Transition From IPv4 To IPv6

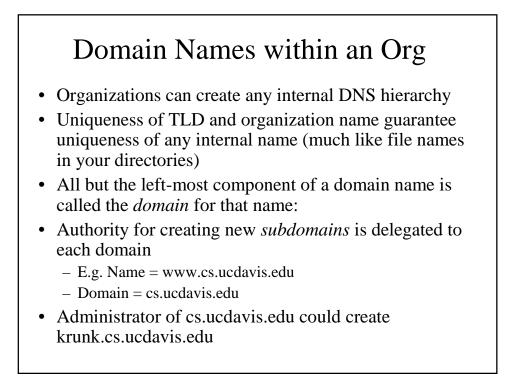
- Not all routers can be upgraded simultaneously
 - no "flag days"
 - How will the network operate with mixed IPv4 and IPv6 routers?
- Two proposed approaches:
 - Dual Stack: some routers with dual stack (v6, v4) can "translate" between formats
 - Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

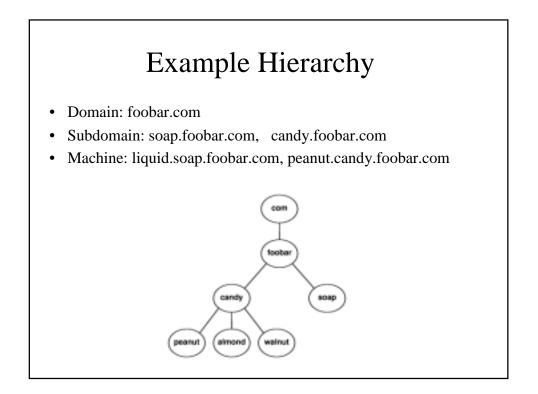
DNS – Domain Name System

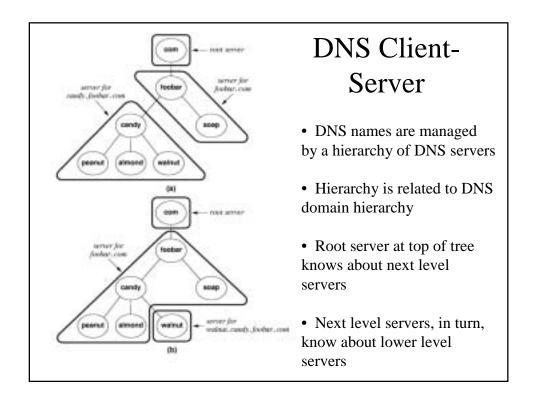
Introduction to DNS

- IP assigns 32-bit addresses to hosts (interfaces)
- Binary addresses easy for computers to manage
- All applications use IP addresses through the TCP/IP protocol software
- But difficult for humans to remember:
 - % telnet 137.229.114.139
- The *Domain Name System* (DNS) provides translation between symbolic names and IP addresses

Structure of DNS Names


- Each name consists of a sequence of alphanumeric components separated by periods
- Examples:
 - www.math.uaa.alaska.edu
 - thanatos.uaa.alaska.edu
 - www.alaska.edu
- Names are hierarchical, with most-significant component on the right
- Middle is the organization
- Left-most component is computer name

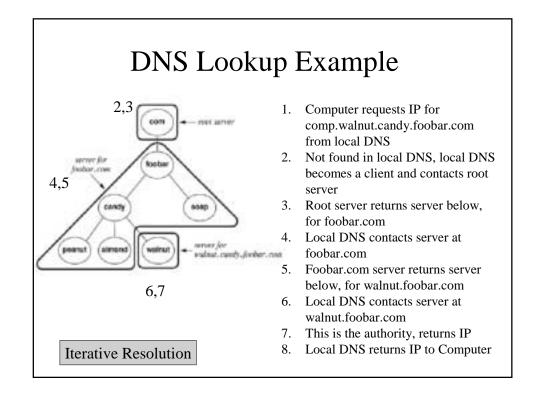

DNS Naming Structure


- *Top level domains* (right-most components; also known as *TLDs*) defined by the global authority ICANN
 - com Commercial organization
 - edu Educational institution
 - gov Government organization
 - mil Military organization
- Organizations apply for names in a top-level domain:
 - alaska.edu
 - mcdonalds.com
- Organizations determine own internal structure
 - E.g. www.alaska.edu, bigmac.mcdonalds.com

Geographic Structure

- Top-level domains are US-centric
- Geographic TLDs used for organizations in other countries:
 - .uk United Kingdom
 - .fr France
 - .ch Switzerland
 - .to Togo
- Countries define their own internal hierarchy: ac.uk and .edu.au are used for academic organizations in the United Kingdom and Australia

Choosing a DNS Architecture


- Small organizations can use a single server
 - Easy to administer
 - Inexpensive
- Large organizations often use multiple servers
 - Reliability through redundancy
 - Improved response time through load-sharing
 - Delegation of naming authority
- Locality of reference applies users will most often look up names of computers within same organization

Name Resolution

- Resolver software typically available as library procedures
 - Implement DNS application protocol
 - Software configured for local servers
 - Example UNIX gethostbyname or built into the OS
- Calling program is *client*
 - Constructs DNS protocol message a DNS request
 - Sends message to local DNS server, "What is the IP address of machine

blah>?"
- DNS server resolves name
 - Constructs DNS protocol message a DNS reply containing the IP address of the requested name
 - Sends message to client program and waits for next request

DNS Servers Each DNS server is the *authoritative server* for the names it manages If request contains name managed by receiving server, that server replies directly Otherwise, request must be forwarded to the appropriate authoritative server Process: Client contacts local DNS server, L If L knows the requested IP or is the authority, return the IP

- Otherwise, contact the root server
 - Root server returns to L the authoritative server for the domain
 - L contacts this server
 - Process may repeat until we find the authoritative server

DNS Efficiencies

- DNS resolution can be very inefficient
 - Every host referenced by name triggers a DNS request
 - Every DNS request for the address of a host in a different organization goes through the root server
- Servers and hosts use *caching* to reduce the number of DNS requests
 - Cache is a list of recently resolved names and IP addresses
 - Authoritative server include time-to-live with each reply
- Servers use *replication* to decrease the load on root servers
- DNS servers use UDP for efficiency
 - Port 53 UDP, Port 53 TCP for long messages
 - Often running Berkeley Internet Name Domain (BIND) s/w

Types of DNS Entries

- DNS can hold several types of records
- Each record includes
 - Domain name, Record type, Data value
- "A" Type records map from domain name to IP address – Domain name - mazzy
 - Record type A
 - Data value 137.229.134.207
- Other types:
 - MX (Mail eXchanger) maps domain name used as e-mail destination to IP address
 - CNAME alias from one domain name to another
- Result name that works with one application may not work with another! (e.g. could email to a domain but not ping it)

Abbreviations

- May be convenient to use abbreviations for local computers; e.g. mazzy for mazzy.math.uaa.alaska.edu
- Abbreviations are handled in the *resolver*; DNS servers only know *full-qualified domain names* (FQDNs)
- Local resolver is configured with list of suffixes to append
- Suffixes are tried sequentially until match found
- Other heuristics may be tried (e.g. add .com)

- Domain Name System maps from computer names and IP addresses
- Important to hide 32-bit IP addresses from humans
- DNS names are hierarchical and allocated locally
- Replication and caching are important performance enhancements
- DNS provides several types of records