
3/21/2017

1

Intro to GPU’s for Parallel
Computing

Goals for Rest of Course

• Learn how to program massively parallel
processors and achieve
– high performance
– functionality and maintainability
– scalability across future generations

• Acquire technical knowledge required to achieve
the above goals
– principles and patterns of parallel programming
– processor architecture features and constraints
– programming API, tools and techniques

• Overview of architecture first, then introduce
architecture as we go

3/21/2017

2

Equipment

• Your own, if CUDA-enabled; will use CUDA SDK in C
– Compute Unified Device Architecture
– NVIDIA G80 or newer
– G80 emulator won’t quite work

• Lab machine – uaa-csetesla.duckdns.org
– Ubuntu
– two Intel Xeon E5-2609 @2.4Ghz, each four cores
– 128 Gb memory
– Two nVidia Quadro 4000’s

• 256 CUDA Cores
• 1 Ghz Clock
• 2 Gb memory

Why Massively Parallel Processors
• A quiet revolution and potential build-up

– 2006 Calculation: 367 GFLOPS vs. 32 GFLOPS
– G80 Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
– Until recently, programmed through graphics API

– GPU in every PC and workstation – massive volume and potential
impact

3/21/2017

3

DRAM

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU GPU

CPUs and GPUs have fundamentally
different design philosophies

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

Architecture of a CUDA-capable GPU

Streaming
Processor
(SP)

Streaming
Multiprocessor
(SM)

Building
Block

32 SM’s each with 8 SP’s on one Quadro 4000

3/21/2017

4

GT200 Characteristics
• 1 TFLOPS peak performance (25-50 times of current high-

end microprocessors)
• 265 GFLOPS sustained for apps such as Visual Molecular

Dynamics (VMD)
• Massively parallel, 128 cores, 90W
• Massively threaded, sustains 1000s of threads per app
• 30-100 times speedup over high-end microprocessors on

scientific and media applications: medical imaging,
molecular dynamics

“I think they're right on the money, but the huge performance
differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s)
will invite close scrutiny so I have to be careful what I say
publically until I triple check those numbers.”

-John Stone, VMD group, Physics UIUC

8

Future Apps Reflect a Concurrent
World

• Exciting applications in future mass computing
market have been traditionally considered
“supercomputing applications”
– Molecular dynamics simulation, Video and audio coding and

manipulation, 3D imaging and visualization, Consumer game
physics, and virtual reality products

–These “Super-apps” represent and model physical,
concurrent world

• Various granularities of parallelism exist, but…
– programming model must not hinder parallel implementation
– data delivery needs careful management

3/21/2017

5

Sample of Previous GPU Projects
Application Description Source Kernel % time

H.264 SPEC ‘06 version, change in guess vector 34,811 194 35%

LBM SPEC ‘06 version, change to single precision

and print fewer reports
1,481 285 >99%

RC5-72 Distributed.net RC5-72 challenge client code 1,979 218 >99%

FEM Finite element modeling, simulation of 3D

graded materials
1,874 146 99%

RPES Rye Polynomial Equation Solver, quantum

chem, 2-electron repulsion
1,104 281 99%

PNS Petri Net simulation of a distributed system 322 160 >99%

SAXPY Single-precision implementation of saxpy,

used in Linpack’s Gaussian elim. routine
952 31 >99%

TRACF Two Point Angular Correlation Function 536 98 96%

FDTD Finite-Difference Time Domain analysis of

2D electromagnetic wave propagation
1,365 93 16%

MRI-Q Computing a matrix Q, a scanner’s

configuration in MRI reconstruction
490 33 >99%

Speedup of Applications

• GeForce 8800 GTX vs. 2.2GHz Opteron 248

• 10 speedup in a kernel is typical, as long as the kernel can occupy
enough parallel threads

• 25 to 400 speedup if the function’s data requirements and control
flow suit the GPU and the application is optimized

0

1 0

2 0

3 0

4 0

5 0

6 0

H.264 L BM RC5-72 F EM RPES PNS SAXPY T PACF F DT D M RI-Q M RI-

F HD

Ke rn e l

Ap p lic a tio n

210 457
431

316
263

G
P

U
 S

p
e

e
d

u
p

R
e

la
ti
v
e

 t
o

 C
P

U

79

3/21/2017

6

GPU History
CUDA

Graphics Pipeline Elements

1. A scene description: vertices, triangles, colors,

lighting

2.Transformations that map the scene to a

camera viewpoint

3.“Effects”: texturing, shadow mapping, lighting

calculations

4.Rasterizing: converting geometry into pixels

5.Pixel processing: depth tests, stencil tests, and

other per-pixel operations.

3/21/2017

7

Host

Vertex Control
Vertex

Cache
VS/T&L

Triangle Setup

Raster

Shader

ROP

FBI

Texture

Cache Frame

Buffer

Memory

CPU

GPU
Host Interface

A Fixed Function

GPU Pipeline

Texture mapping example: painting a world map

texture image onto a globe object.

Texture Mapping Example

3/21/2017

8

Triangle Geometry Aliased Anti-AliasedTriangle Geometry Aliased Anti-Aliased

Anti-Aliasing Example

3D Application

or Game

3D API:

OpenGL or

Direct3D

Programmable

Vertex

Processor

Primitive

Assembly

Rasterization &

Interpolation

3D API

Commands

Transformed

Vertices

Assembled

Polygons,

Lines, and

Points

GPU

Command &

Data Stream

Programmable

Fragment

Processor

Rasterized

Pre-transformed

Fragments

Transformed

Fragments

Raster

Ops
Framebuffer

Pixel

Updates
GPU

Front

End

Pre-transformed

Vertices

Vertex Index

Stream

Pixel

Location

Stream

CPU – GPU Boundary

CPU

GPU

An example of separate vertex processor and fragment processor in

a programmable graphics pipeline

Programmable Vertex and Pixel Processors

3/21/2017

9

GeForce 8800 GPU

• 2006 – Mapped the separate programmable graphics

stages to an array of unified processors

– Logical graphics pipeline visits processors three times with

fixed-function graphics logic between visits

– Load balancing possible; different rendering algorithms

present different loads among the programmable stages

• Dynamically allocated from unified processors

• Functionality of vertex and pixel shaders identical to

the programmer

– geometry shader to process all vertices of a primitive

instead of vertices in isolation

L2

FB

SP SP

L1

TF

T
h

re
a

d
 P

ro
c

e
s

s
o

r

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Data Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

Unified Graphics Pipeline GeForce

8800

3/21/2017

10

What is (Historical) GPGPU ?

• General Purpose computation using GPU and graphics API in

applications other than 3D graphics

– GPU accelerates critical path of application

• Data parallel algorithms leverage GPU attributes

– Large data arrays, streaming throughput

– Fine-grain SIMD parallelism

– Low-latency floating point (FP) computation

• Applications – see http://gpgpu.org

– Game effects (FX) physics, image processing

– Physical modeling, computational engineering, matrix algebra,

convolution, correlation, sorting

Previous GPGPU Constraints
• Dealing with graphics API

– Working with the corner cases of the

graphics API

• Addressing modes

– Limited texture size/dimension

• Shader capabilities

– Limited outputs

• Instruction sets

– Lack of Integer & bit ops

• Communication limited

– Between pixels

– Scatter a[i] = p

Input Registers

Fragment Program

Output Registers

Constants

Texture

Temp Registers

per thread

per Shader

per Context

FB Memory

3/21/2017

11

Tesla GPU

• NVIDIA developed a more general purpose GPU

• Can programming it like a regular processor

• Must explicitly declare the data parallel parts of the

workload

– Shader processors fully programming processors with

instruction memory, cache, sequencing logic

– Memory load/store instructions with random byte

addressing capability

– Parallel programming model primitives; threads, barrier

synchronization, atomic operations

CUDA

• “Compute Unified Device Architecture”

• General purpose programming model

– User kicks off batches of threads on the GPU

– GPU = dedicated super-threaded, massively data parallel co-processor

• Targeted software stack

– Compute oriented drivers, language, and tools

• Driver for loading computation programs into GPU

– Standalone Driver - Optimized for computation

– Interface designed for compute – graphics-free API

– Data sharing with OpenGL buffer objects

– Guaranteed maximum download & readback speeds

– Explicit GPU memory management

http://www.opengl.org/

3/21/2017

12

Parallel Computing on a GPU

• 8-series GPUs deliver 25 to 200+ GFLOPS
on compiled parallel C applications
– Available in laptops, desktops, and clusters

• GPU parallelism is doubling every year

• Programming model scales transparently

• Programmable in C with CUDA tools

• Multithreaded SPMD model uses application
data parallelism and thread parallelism

GeForce 8800

Tesla S870

Tesla D870

Overview

• CUDA programming model – basic concepts and

data types

• CUDA application programming interface - basic

• Simple examples to illustrate basic concepts and

functionalities

• Performance features will be covered later

3/21/2017

13

CUDA – C with no shader limitations!

• Integrated host+device app C program

– Serial or modestly parallel parts in host C code

– Highly parallel parts in device SPMD/SIMT kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);

CUDA Devices and Threads

• A compute device

– Is a coprocessor to the CPU or host

– Has its own DRAM (device memory)

– Runs many threads in parallel

– Is typically a GPU but can also be another type of parallel processing

device

• Data-parallel portions of an application are expressed as device

kernels which run on many threads

• Differences between GPU and CPU threads

– GPU threads are extremely lightweight

• Very little creation overhead

– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few

3/21/2017

14

27

G80 CUDA mode – A Device Example

• Processors execute computing threads

• New operating mode/HW interface for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

Extended C
• Type Qualifiers

– global, device, shared,

local, host

• Keywords

– threadIdx, blockIdx

• Intrinsics

– __syncthreads

• Runtime API

– Memory, symbol,

execution management

• Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

__shared__ float region[M];

...

region[threadIdx] = image[i];

__syncthreads()

...

image[j] = result;

}

// Allocate GPU memory

void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block

convolve<<<100, 10>>> (myimage);

3/21/2017

15

CUDA Platform

CUDA Platform

30

3/21/2017

16

Arrays of Parallel Threads

• A CUDA kernel is executed by an array of
threads
– All threads run the same code (SPMD)

– Each thread has an ID that it uses to compute
memory addresses and make control decisions

76543210

…

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

Thread Block 0

…
…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block 1

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block N - 1

Thread Blocks: Scalable Cooperation

• Divide monolithic thread array into multiple blocks

– Threads within a block cooperate via shared memory,

atomic operations and barrier synchronization

– Threads in different blocks cannot cooperate

– Up to 65535 blocks, 512 threads/block

76543210 76543210 76543210

3/21/2017

17

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs

• We launch a “grid” of “blocks”
of “threads”

• Each thread uses IDs to decide
what data to work on
– Block ID: 1D, 2D, or 3D

• Usually 1D or 2D

– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing

– Solving PDEs on volumes

– …

CUDA Memory Model Overview

• Global memory

– Main means of

communicating R/W

Data between host and

device

– Contents visible to all

threads

– Long latency access

• We will focus on global

memory for now

– Constant and texture

memory will come later

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

3/21/2017

18

35

CUDA Device Memory Allocation

• cudaMalloc()

– Allocates object in the

device Global Memory

– Requires two parameters

• Address of a pointer to the

allocated object

• Size of allocated object

• cudaFree()

– Frees object from device

Global Memory

• Pointer to freed object

Grid

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

DON’T use a CPU

pointer in a GPU

function !

CUDA Device Memory Allocation (cont.)

• Code example:

– Allocate a 64 * 64 single precision float array

– Attach the allocated storage to Md

– “d” is often used to indicate a device data structure

TILE_WIDTH = 64;

float* Md;

int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);

cudaFree(Md);

3/21/2017

19

CUDA Host-Device Data Transfer

• cudaMemcpy()

– memory data transfer

– Requires four parameters

• Pointer to destination

• Pointer to source

• Number of bytes copied

• Type of transfer

– Host to Host

– Host to Device

– Device to Host

– Device to Device

• Non-blocking/asynchronous

transfer

Grid

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

CUDA Host-Device Data Transfer

(cont.)

• Code example:

– Transfer a 64 * 64 single precision float array

– M is in host memory and Md is in device memory

– cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

3/21/2017

20

CUDA Keywords

CUDA Function Declarations

hosthost__host__ float HostFunc()

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable

from the:

Executed

on the:

• __global__ defines a kernel function

– Must return void

3/21/2017

21

CUDA Function Declarations (cont.)

• __device__ functions cannot have their

address taken

• For functions executed on the device:

– No recursion

– No static variable declarations inside the function

– No variable number of arguments

Calling a Kernel Function – Thread Creation

• A kernel function must be called with an execution

configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared

memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

• Any call to a kernel function is asynchronous from

CUDA 1.0 on, explicit synch needed for blocking

3/21/2017

22

Next Time

• Code example

