
9/20/2010

1

Hardware-Based Speculation

Exploiting More ILP

• Branch prediction reduces stalls but may not be
sufficient to generate the desired amount of ILP

• One way to overcome control dependencies is
with speculation
– Make a guess and execute program as if our guess is

correct
– Need mechanisms to handle the case when the

speculation is incorrect

• Can do some speculation in the compiler
– We saw this previously with reordered / duplicated

instructions around branches

9/20/2010

2

Hardware-Based Speculation

• Extends the idea of dynamic scheduling with three key
ideas:
1. Dynamic branch prediction
2. Speculation to allow the execution of instructions before

control dependencies are resolved
3. Dynamic scheduling to deal with scheduling different

combinations of basic blocks
• What we saw earlier was within a basic block

• Modern processors started using speculation around
the introduction of the PowerPC 603, Intel Pentium II
and extend Tomasulo’s approach to support
speculation

Speculating with Tomasulo

• Separate execution from completion
– Allow instructions to execute speculatively but do not let

instructions update registers or memory until they are no longer
speculative

• Instruction Commit
– After an instruction is no longer speculative it is allowed to

make register and memory updates

• Allow instructions to execute and complete out of order
but force them to commit in order

• Add a hardware buffer, called the reorder buffer (ROB),
with registers to hold the result of an instruction between
completion and commit
– Acts as a FIFO queue in order issued

9/20/2010

3

Original Tomasulo Architecture

Tomasulo and Reorder Buffer

• Sits between Execution
and Register File

• Source of operands
• In this case integrated with

Store buffer
• Reservation stations use

ROB slot as a tag
• Instructions commit at

head of ROB FIFO queue
– Easy to undo

speculated instructions
on mispredicted
branches
or on exceptions

9/20/2010

4

ROB Data Structure

• Instruction Type Field
– Indicates whether the instruction is a branch, store, or

register operation

• Destination Field
– Register number for loads, ALU ops, or memory address

for stores

• Value Field
– Holds the value of the instruction result until instruction

commits

• Ready Field
– Indicates if instruction has completed execution and the

value is ready

Instruction Execution
1. Issue: Get an instruction from the Instruction Queue

 If the reservation station and the ROB has a free slot (no structural hazard),
issue the instruction to the reservation station and the ROB, send operands
to the reservation station if available in the register file or the ROB. The
allocated ROB slot number is sent to the reservation station to use as a tag
when placing data on the CDB.

2. Execution: Operate on operands (EX)
 When both operands ready then execute; if not ready, watch CDB for result

3. Write result: Finish execution (WB)
 Write on CDB to all awaiting units and to the ROB using the tag; mark

reservation station available

4. Commit: Update register or memory with the ROB result
 When an instruction reaches the head of the ROB and results are present,

update the register with the result or store to memory and remove the
instruction from the ROB

 If an incorrectly predicted branch reaches the head of the ROB, flush the
ROB, and restart at the correct successor of the branch

Blue text = Change from Tomasulo

9/20/2010

5

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

State

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

F0 LD F0, 10(R2) I ROB1

Dest

1 10+R2

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

State

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

F0 LD F0, 10(R2) E ROB1

Dest

1 10+R2

9/20/2010

6

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

ROB7

ROB6

ROB5

ROB4

ROB3

F10 ADDD F10,F4,F0 I ROB2

F0 LD F0, 10(R2) E ROB1

2 ADDD R(F4),1

Dest

1 10+R2

State

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

ROB7

ROB6

ROB5

ROB4

F2 MULD F2,F10,F6 I ROB3

F10 ADDD F10,F4,F0 I ROB2

F0 LD F0, 10(R2) E ROB1

2 ADDD R(F4),1

Dest

3 MULD 2,R(F6)

1 10+R2

State

9/20/2010

7

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

ROB7

F0 ADDD F0,F4,F6 I ROB6

F4 LD F4,0(R3) E ROB5

-- BNE F0, 0, L I ROB4

F2 MULD F2,F10,F6 I ROB3

F10 ADDD F10,F4,F0 I ROB2

F0 LD F0, 10(R2) E ROB1

2 ADDD R(F4),1

6 ADDD 5,R(F6)

Dest

3 MULD 2,R(F6)

1 10+R2

5 0+R3

State

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

[R3] ROB5 ST F4, 0(R3) I ROB7

F0 ADDD F0,F4,F6 I ROB6

F4 LD F4,0(R3) E ROB5

-- BNE F0, 0, L I ROB4

F2 MULD F2,F10,F6 I ROB3

F10 ADDD F10,F4,F0 I ROB2

F0 LD F0, 10(R2) E ROB1

2 ADDD R(F4),1

6 ADDD 5,R(F6)

Dest

3 MULD 2,R(F6)

1 10+R2

5 0+R3

State

9/20/2010

8

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

[R3] V1 ST F4, 0(R3) W ROB7

F0 ADDD F0,F4,F6 I ROB6

F4 V1 LD F4,0(R3) W ROB5

-- BNE F0, 0, L I ROB4

F2 MULD F2,F10,F6 I ROB3

F10 ADDD F10,F4,F0 I ROB2

F0 LD F0, 10(R2) E ROB1

2 ADDD R(F4),1

6 ADDD V1,R(F6)

Dest

3 MULD 2,R(F6)

1 10+R2

State

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

[R3] V1 ST F4, 0(R3) W ROB7

F0 ADDD F0,F4,F6 E ROB6

F4 V1 LD F4,0(R3) W ROB5

-- BNE F0, 0, L I ROB4

F2 MULD F2,F10,F6 I ROB3

F10 ADDD F10,F4,F0 I ROB2

F0 LD F0, 10(R2) E ROB1

2 ADDD R(F4),1

Dest

3 MULD 2,R(F6)

1 10+R2

State

9/20/2010

9

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

[R3] V1 ST F4, 0(R3) W ROB7

F0 V2 ADDD F0,F4,F6 W ROB6

F4 V1 LD F4,0(R3) W ROB5

-- BNE F0, 0, L I ROB4

F2 MULD F2,F10,F6 I ROB3

F10 ADDD F10,F4,F0 I ROB2

F0 LD F0, 10(R2) E ROB1

2 ADDD R(F4),1

Dest

3 MULD 2,R(F6)

1 10+R2

State

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

[R3] V1 ST F4, 0(R3) W ROB7

F0 V2 ADDD F0,F4,F6 W ROB6

F4 V1 LD F4,0(R3) W ROB5

-- BNE F0, 0, L I ROB4

F2 MULD F2,F10,F6 I ROB3

F10 ADDD F10,F4,F0 I ROB2

F0 V3 LD F0, 10(R2) W ROB1

2 ADDD R(F4),V3

Dest

3 MULD 2,R(F6)

State

9/20/2010

10

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

[R3] V1 ST F4, 0(R3) W ROB7

F0 V2 ADDD F0,F4,F6 W ROB6

F4 V1 LD F4,0(R3) W ROB5

-- BNE F0, 0, L E ROB4

F2 MULD F2,F10,F6 I ROB3

F10 ADDD F10,F4,F0 E ROB2

F0 V3 LD F0, 10(R2) C ROB1

Dest

3 MULD 2,R(F6)

State

F0=V3

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

[R3] V1 ST F4, 0(R3) W ROB7

F0 V2 ADDD F0,F4,F6 W ROB6

F4 V1 LD F4,0(R3) W ROB5

-- BNE F0, 0, L W ROB4

F2 MULD F2,F10,F6 I ROB3

F10 V4 ADDD F10,F4,F0 W ROB2

F0 V3 LD F0, 10(R2) C ROB1

Dest

3 MULD V4,R(F6)

State

F0=V3

9/20/2010

11

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

[R3] V1 ST F4, 0(R3) W ROB7

F0 V2 ADDD F0,F4,F6 W ROB6

F4 V1 LD F4,0(R3) W ROB5

-- BNE F0, 0, L W ROB4

F2 MULD F2,F10,F6 E ROB3

F10 V4 ADDD F10,F4,F0 C ROB2

F0 V3 LD F0, 10(R2) C ROB1

Dest

State

F0=V3
F10=V4

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

[R3] V1 ST F4, 0(R3) W ROB7

F0 V2 ADDD F0,F4,F6 W ROB6

F4 V1 LD F4,0(R3) W ROB5

-- BNE F0, 0, L W ROB4

F2 V5 MULD F2,F10,F6 W ROB3

F10 V4 ADDD F10,F4,F0 C ROB2

F0 V3 LD F0, 10(R2) C ROB1

Dest

State

F0=V3
F10=V4

9/20/2010

12

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

[R3] V1 ST F4, 0(R3) W ROB7

F0 V2 ADDD F0,F4,F6 W ROB6

F4 V1 LD F4,0(R3) W ROB5

-- BNE F0, 0, L W ROB4

F2 V5 MULD F2,F10,F6 C ROB3

F10 V4 ADDD F10,F4,F0 C ROB2

F0 V3 LD F0, 10(R2) C ROB1

Dest

State

F0=V3
F10=V4
F2=V5

Tomasulo With ROB

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

Dest

Oldest

Newest

From
Memory

Dest

Reorder Buffer

Registers

[R3] V1 ST F4, 0(R3) W ROB7

F0 V2 ADDD F0,F4,F6 W ROB6

F4 V1 LD F4,0(R3) W ROB5

-- BNE F0, 0, L C ROB4

F2 V5 MULD F2,F10,F6 C ROB3

F10 V4 ADDD F10,F4,F0 C ROB2

F0 V3 LD F0, 10(R2) C ROB1

Dest

State

F0=V3
F10=V4
F2=V5

9/20/2010

13

Avoiding Memory Hazards

• A store only updates memory when it reaches the head of the
ROB
– Otherwise WAW and WAR hazards are possible
– By waiting to reach the head memory is updated in order and no

earlier loads or stores can still be pending

• If a load accesses a memory location written to by an earlier
store then it cannot perform the memory access until the
store has written the data
– Prevents RAW hazard through memory

Reorder Buffer Implementation

• In practice
– Try to recover as early as possible after a branch is

mispredicted rather than wait until branch reaches
the head

– Performance in speculative processors more sensitive
to branch prediction
• Higher cost of misprediction

• Exceptions
– Don’t recognize the exception until it is ready to

commit
– Could try to handle exceptions as they arise and

earlier branches resolved, but more challenging

