
Passing and Returning Objects from Methods

Recall the call by value behavior we get when we send a primitive data type in as a parameter:

public class Foo

{

public static void doesntChange(int num1)

{

int y = 3; // Local variable, used later

System.out.println(num1); // Prints 1

num1 = 5;

System.out.println(num1); // Prints 5

return;

}

public static void main(String[] args)

{

int val = 1;

doesntChange(val);

System.out.println("Back in main:" + val); // Prints 1

}

}

The output for this program is:

1

5

Back in main: 1

We send in a copy of val into the method. Num1 is a separate variable with the value 1.

Side Q: How would we invoke the method if it is not static?

(In class – describe the stack again and how the value 1 is copied into the space allocated for num1).

We get different behavior if we pass an Object. Consider the Foo class:

public class Foo

{

 public int val; // Public for simplicity

 public Foo()

 {

 val = 0;

 }

 public Foo(int val)

 {

 this.val = val;

 }

}

Now we pass a Foo object to a method:

public class Test{

 public static void methodCall(Foo obj)

 {

 System.out.println(obj.val); // Outputs 3

 obj.val = 10;

 System.out.println(obj.val); // Outputs 10

 }

 public static void main(String[] args)

 {

 Foo f = new Foo(3);

 methodCall(f);

 System.out.println(f.val); // Outputs 10

 }

}

This outputs 10 back in main! The contents of the object are changed! Passing an object to a method

changes the contents of the object. This is because the object is passed by reference.

(In class – show stack and how pass by reference works to change the original object).

Note that arrays are also passed by reference. If a method changes an array then it will be changed back

in the calling code. This is because arrays are objects.

A method can return only one value. What if you want to return more than one thing? You can have a

method return an object with the items to send back. Here is an example where a method returns a

name and ID wrapped inside a Person object:

public class Person

{

 public String name; // Public for simplicity

 public int ID;

 public Person()

 {

 name = "";

 ID = 0;

 }

 public Person(String n, int i)

 {

 name = n;

 id = i;

 }

}

public class Test

{

 public static Person getPerson()

 {

 Scanner keyboard = new Scanner(System.in);

 System.out.println("Name?");

 String name = keyboard.nextLine();

 System.out.println("ID?");

 int id = keyboard.nextInt();

 return new Person(name,id);

 }

 public static void main(String[] args)

 {

 Person someone = getPerson();

 System.out.println(someone.name + " " +

someone.ID);

 }

}

The new person entered is returned back to main where it can be used.

