

File I/O

We can use essentially the same techniques we’ve been using to input from the keyboard

and output to the screen and just apply them to files instead.

If you want to prepare input data ahead, you may store the data in a file and direct the

program to read its input from a file. If you want to save output data in a file to use later,

you may direct the program to write data to a file. To read and/or write to a text file,

perform the following steps:

1. Request the preprocessor to include file <fstream> as well as file <iostream>.

The former contains the declarations for defining input and output streams other

than cin and cout.

2. Declare an input stream to be of type ifstream or an output stream to be of type

ofstream (or both).

3. Prepare the streams for use by using the function named open provided in file

<fstream>. The parameter for function open is the external name of the file. The

external name is the name under which the file is stored on the disk.

4. Put the file name to the left of the insertion or extraction operator.

5. When finished, use the close function to close the file.

Here is an example program that reads four floating point data values from a file and

writes them to another file in reverse order.

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

 float val1, val2, val3, val4; // declares 4 variables

 ifstream inData; // declares input stream

 ofstream outData; // declares output stream

 inData.open("Data.In");

 // binds program variable inData to file "Data.In"

 outData.open("Data.Out");

 // binds program variable outData to file "Data.Out"

 inData >> val1 >> val2 >> val3 >> val4; // inputs 4 values

 outData << val4 << endl;

 outData << val3 << endl;

 outData << val2 << endl;

 outData << val1 << endl; // outputs 4 values

 inData.close();

 outData.close();

 return 0;

}

To reference a file in your program you need both an internal name and an external name.

The internal name is what you call it in your program; the external name is the name the

operating system knows it by. Somehow these two names must be associated with one

another. This association is called binding and is done in function open. Notice that

inData and outData are identifiers declared in your program; "Data.In" and "Data.Out"

are character strings. Data.In is the name that was used when the input data file was

created; Data.Out is the name of the file where the answers are stored.

When the above program is run, if Data.In contains:

 3.4

 5.1

 3.13145

 55.23

then afterwards, a new file name Data.Out will be created that contains:

 55.23

 3.13145

 5.1

 3.4

Note that the filenames are case-sensitive on Unix systems. If an entire path is not

declared, it is expected that the file is in the current working directory. In Visual Studio,

this is in the main project folder, then in the sub-folder with the project name. If you

specify the entire path to your file don’t forget to use the double slashes to escape the file:

 myFile.open(“c:\\My Documents\\In.txt”);

C++11 allows you to use a literal string to avoid escaping the backslash:

 myFile.open(R"(c:\MyDocs\In.txt)");

If you aren’t sure where your default directory is for your IDE you can always write out a

file with a unique name and then search for it on your computer.

After opening the file, it’s a very good idea to check to see if the open has failed. Upon

failure the file variable will be equal to false. Failure could occur for many reasons (file

not found, disk full, etc.) If successful, the file variable will be non-null:

 myFile.open(“somefile.txt”);

 if (myFile)

 cout << “Open succeeded”);

 else

 cout << “Open failed”;

What if we didn’t know in advance how many data items were in a file, and wanted to

process it until we reached the end of the file? There is a function we can use to test for

the end of the file, the eof() function. To test for the end of a file, use the variable name

for the input stream, with the dotted notation: ifvar.eof(). This returns true if the end of

the file has been reached, and false otherwise. The following example reads the file

named “test.txt” and outputs it to the screen:

int main()

{

 string s;

 ifstream inData;

 inData.open(“test.txt”);

 while (!inData.eof()) // While not the end of the file

{

 getline(inData, s); // Read a line of text

 cout << s << endl; // Print it to the screen

 }

 inData.close();

 return 0;

}

As long as we haven’t reached the end of the file, we’ll continue reading a line of text in

and print it out to the screen. For most programs, instead of printing the data to the

screen, you would be doing some other form of processing.

This code can run differently on different operating systems!

If you run this in Visual Studio on Windows and also in Unix, you’ll notice an extra

blank line printed in Unix.

On a Unix system, the eof() call does not become true until we try to read past the end of

the file. The program above actually reads past the end of the file and tries to print out

the string s after we read the EOF marker. In this case we get a blank string when we try

to use getline on the end of the file, so this program will always print a blank line at the

end. If you don’t want this behavior, the last line of the loop should be a getline.

Another way to check to see if we’ve reached the end of the file is to use the return value

of getline(). This function will return NULL or false when it has reached the end of the

file. This also works using cin >> var. This is generally the preferred method over using

EOF. The result is we input from the file and check for the end of the file at the same

time:

int main()

{

 string s;

 ifstream inData;

 inData.open(“test.txt”);

 // Get a line of text and check for EOF at the same time

 while (getline(inData, s))

{

 cout << s << endl; // Print it to the screen

 }

 inData.close();

 return 0;

}

int main()

{

 string s;

 ifstream inData;

 inData.open(“test.txt”);

 // Read a word at a time and output it until EOF

 while (inData >> s)

{

 cout << s << endl; // Print it to the screen

 }

 inData.close();

 return 0;

}

Passing File Variables to Functions

One final note about using file variables, if you wish to pass a file stream variable as a

parameter in a function, the variable must be passed by reference.

We have only covered the basics on file manipulation here. If you would like to know

more (e.g. random access into files, appending to files, peeking into files, putting data

back into file streams) then please refer to the textbook.

