

Introduction to C++11 Threads

In C++11 a wrapper Thread class is available. However, you still need to have a library

that implements the thread class. Visual Studio supports C++11 threads, but some other

IDE’s and C++ compilers don’t. In Linux we will need to use the pthread library.

A thread is a separate computation process. In Java and C++, you can have programs

with multiple threads. You can think of the threads as computations that execute in

parallel. On a computer with enough processors, the threads might indeed execute in

parallel. In most normal computing situations, the threads do not really execute in

parallel. Instead, the computer switches resources between threads so that each thread in

turn does a little bit of computing. To the user this looks like the processes are executing

in parallel.

You have already experienced this idea. Consider Visual Studio – as you are typing your

code it is able to check for errors and draw a red squiggle if one is detected. This

happens “at the same time” while you are entering your program, you don’t have to stop

typing and select a “check for errors” command. Visual Studio and the operating system

is using threads to make this happen. There may or may not be some work being done in

parallel depending on your computer and operating system. Most likely the two

computation threads are simply sharing computer resources so that they take turns using

the computer’s resources.

Threads are useful when you want some processing to continue when another part is

blocked/stopped (perhaps waiting for input). Threads may also run faster, if some

computations can be run on separate CPU’s or cores on your system. In GPU

programming you can have hundreds of thousands of threads! It is now possible to run

what used to be the equivalent of a supercomputer on a GPU-enabled server or

workstation.

Let’s show how to fire off a function that runs in a separate thread:
#include <iostream>

#include <thread>

using namespace std;

void func(int a)

{

 cout << "Hello World: " << a << " " << this_thread::get_id()

<< endl;

}

int main()

{

 thread t1(func, 10);

 thread t2(func, 20);

 t1.join();

 t2.join();

 return 0;

}

Compile this program in Linux with:
 g++ program.cpp –std=c++11 -lpthread

This program starts off two threads, each runs the function “func”. Each thread is

automatically given a unique ID, which we can access if desired from get_id(). It is often

useful to pass in an ID number, which we did by passing in the number in variable a.

If you run this, you’ll see the two threads run and output Hello World. Once a thread is

started we have no control over when it runs – it is now up to the operating system! You

can see this by running the threads and seeing the output from each thread overwriting

the other. This is because while one thread is in the middle of outputting its message,

there is a context switch and we run the second thread, which spits out its text right in the

middle of the text from the first thread.

The join() function makes the main function wait for each thread to finish before

continuing. This is important to synchronize multiple threads. If the join is missing, the

main thread could exit before the child threads finish, causing an error.

If we want to avoid the threads overwriting each other, we can add a mutex, for mutual

exclusion. This locks the thread so only one thread can enter a region of code at a time.

This is extremely important for some programs to prevent deadlock or other types of

errors (you see more of this in operating systems). The following modification forces

other threads to wait so only one at a time can run the code in func:

#include <mutex>

using namespace std;

mutex global_lock;

void func(int a)

{

 global_lock.lock();

 cout << "Hello World: " << a << " " << this_thread::get_id()

<< endl;

 global_lock.unlock();

}

It is common to want a lot more than one or two threads. In this case, we can make an

array of threads. Here is some code in main that makes an array of 10 threads:

 thread tarr[10];

 for (int i =0; i < 10; i++)

 tarr[i] = thread(func, i);

 for (int i =0; i < 10; i++)

 tarr[i].join();

Notice the unpredictability of which thread runs first!

Hello World: 0 140198342674176

Hello World: 3 140198311204608

Hello World: 2 140198321694464

Hello World: 4 140198300714752

Hello World: 1 140198332184320

Hello World: 5 140198290224896

Hello World: 6 140198279735040

Hello World: 7 140198269245184

Hello World: 8 140198258755328

Hello World: 9 140198248265472

It is common to want to run a class in a thread. Here is the template. In this case we

called the class “Runnable” so it is similar to Java but it could be whatever name you

like:

#include <iostream>

#include <thread>

#include <mutex>

using namespace std;

class Runnable

{

 public:

 Runnable();

 Runnable(int n);

 void operator()(); // Yes, there are two ()()

 private:

 int num;

};

Runnable::Runnable() : num(0)

{ }

Runnable::Runnable(int n) : num(n)

{ }

void Runnable::operator()()

{

 cout << "Hello world, I am number " << num << endl;

}

int main()

{

 Runnable r1(10);

 Runnable r2(20);

 thread t1(r1);

 thread t2(r2);

 t1.join();

 t2.join();

 return 0;

}

When the thread starts, the class Runnable executes the code in the operator()() method.

Any data we want to pass to the thread is generally sent in the constructor.

Here is one more example. In this case, we do something useful! We have three threads,

and each one is searching (perhaps in parallel) a portion of an array for the minimum

value. The minimum each thread finds for each section is stored in a “results” array,

where we have a slot reserved for each thread. The main function has to go through the

results to find the overall minimum.

#include <iostream>

#include <thread>

#include <mutex>

using namespace std;

class Runnable

{

 public:

 Runnable();

 Runnable(int *target, int *results, int num, int start, int end);

 void operator()();

 private:

 int *target, *results;

 int num, start, end;

};

Runnable::Runnable()

{

 target=nullptr;

 results=nullptr;

 num=0;

 start=0;

 end=0;

}

Runnable::Runnable(int *target, int *results, int num, int start,

 int end)

{

 this->target= target;

 this->results = results;

 this->num = num;

 this->start = start;

 this->end = end;

}

void Runnable::operator()()

{

 int min = target[start];

 for (int i=start+1; i<=end; i++)

 {

 if (target[i]<min)

 min = target[i];

 }

 results[num] = min;

}

int main(int, char **)

{

 thread tarr[3];

 int target[] = {31, 66, 41, 8, 92, 47, 22, 87, 45, 92, 4, 14};

 int results[] = {999, 999, 999, 999};

 for (int i = 0; i < 3; i++)

 {

 Runnable r(target, results, i, i*4, i*4+3);

 tarr[i] = thread(r);

 }

 for (int i =0; i < 3; i++)

 tarr[i].join();

 for (int i =0; i < 3; i++)

 cout << results[i] << endl;

 int min = results[0];

 if (min > results[1])

 min = results[1];

 if (min > results[2])

 min = results[2];

 cout << "The minimum from threaded min-search is " << min << endl;

 return 0;

}

The output:

8

22

4

The minimum from threaded min-search is 4

The code sends in the array to search, an array for results, an ID, and bounds for each

thread to search. Each thread then searches its portion of the array, finds the minimum,

and uses its ID to determine a unique spot to place its result in the results array.

Notice that we passed in an array (a pointer) to each thread to store its results. This is the

general way a thread can communicate back to another thread. We can’t just store the

results in a class variable, because each thread is like a separate running program and has

its own class variables.

To demonstrate, consider this code:

class Runnable

{

 public:

 Runnable();

 void operator()();

 int num;

};

Runnable::Runnable()

{

 num=1;

 cout << "In constructor " << num << endl;

}

void Runnable::operator()()

{

 num=2;

 cout << "In op " << num << endl;

}

int main(int, char **)

{

 Runnable r;

 thread t;

 t = thread(r);

 t.join();

 cout << "In main " << r.num << endl;

 return 0;

}

The output is:

In constructor 1

In op 2

In main 1

We aren’t able to make a change in the operator()() function and have that sent back to

the caller, because it’s in another thread. But we can send data back if it’s through a

pointer:

class Runnable

{

 public:

 Runnable(int *n);

 void operator()();

 int *num;

};

Runnable::Runnable(int *n)

{

 num = n; // Save pointer to n, allocated in main

 cout << "In constructor " << *num << endl;

}

void Runnable::operator()()

{

 *num = 2;

 cout << "In op " << *num << endl;

}

int main()

{

 int n=9;

 Runnable r(&n);

 thread t;

 t = thread(r);

 t.join();

 cout << "In main " << n << endl;

 return 0;

}

In constructor 9

In op 2

In main 2

There is a lot more to threads but at least you should have an idea of what they are and

where they may be useful from this brief introduction.

