
Mouse and Keyboard Listeners

The good news is that mouse and keyboard input is handled in basically the same way as other listeners.

We select the component that we want to handle a listener and implement the mouse or keyboard

interfaces. When a mouse or keyboard event occurs, the appropriate method is invoked in the

interface.

Mouse Listeners

To catch mouse events we import java.awt.event.MouseListener and the class we want to handle

events should implement the MouseListener interface. This interfaces requires that we define the

following methods:

 mouseClicked

 mouseEntered

 mousePressed

 mouseReleased

 mouseExited

Each method takes a MouseEvent parameter which gives us the X and Y coordinates of the mouse.

The component to handle the mouse events calls the addMouseListener(component) method.

Here is an example that outputs the X and Y coordinates when the mouse is clicked:

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

…

public class GUI_Deme extends JFrame implements MouseListener

{

 …

 In constructor:

 this.addMouseListener(this);

 Event handlers:

 @Override

 public void mouseClicked(MouseEvent e) {

 System.out.println("X = " + e.getX() + " Y = " +

 e.getY());

 }

 @Override

 public void mousePressed(MouseEvent e) {

 }

 @Override

 public void mouseReleased(MouseEvent e) {

 System.out.println("Mouse released");

 }

 @Override

 public void mouseEntered(MouseEvent e) {

 }

 @Override

 public void mouseExited(MouseEvent e) {

 }

}

Upon clicking the mouse you should see the coordinates as long as some other component isn’t

handling the mouse click (e.g. a button). Note that the XY coordinates are relative to the upper left

corner of the component. You can see this more clearly if you add a mouse listener to a JPanel or some

subcomponent inside a GUI window.

Class exercise: Make a “paint” program that draws a red circle at the location of the mouse click. Circles

drawn from past clicks should remain on the screen.

The MouseListener interface is geared around mouse clicks. If you want to capture mouse motion then

there is a separate interface, the MouseMotionListener. This is also found in java.awt.event. The

MouseMotionListener requires that we implement these methods:

 mouseMoved

 mouseDragged

As you can infer, the methods are invoked when the mouse is either moved or dragged. Both take a

MouseEvent as an input parameter.

The following outputs the mouse coordinates as the mouse is moved:

import java.awt.event.MouseMotionListener;

…

public class GUI_Deme extends JFrame implements MouseMotionListener

{

 …

 In constructor:

 this.addMouseMotionListener(this);

 Event handlers:

 @Override

 public void mouseDragged(MouseEvent e) {

 }

 @Override

 public void mouseMoved(MouseEvent e) {

 System.out.println(e.getX() + " " + e.getY());

 }

}

Class Exercise: Modify the “paint” program from the previous exercise so a red circle is drawn as the

mouse moves if the mouse button is not clicked, but a green circle is draw if the mouse button is held

down (this is considered a drag event). Do the same thing but just toggle colors if the mouse button is

clicked.

Keyboard Listeners

It is a similar drill for keyboard listeners. We just have to learn what interface to implement and what

methods need to be defined. There are two kinds of events: typing a character and pressing/releasing a

key on the keyboard.

Typing a character is a key-typed event while pressing or releasing a key is a key-pressed or key-released

event.

To respond to a keyboard event, the component must have focus.

Here is an example that prints out keys pressed as long as the JFrame window has focus:

import java.awt.event.KeyEvent;

import java.awt.event.KeyListener;

…

public class GUI_Deme extends JFrame implements KeyListener

{

 …

 In constructor:

 this.addKeyListener(this);

 ...

 setVisible(true);

 toFront(); // Set focus to the frame

 requestFocus();

 Event handlers:

 @Override
 public void keyTyped(KeyEvent e) {

 System.out.println("Key Typed");

 displayInfo(e);

 }

 @Override

 public void keyPressed(KeyEvent e) {

 System.out.println("Key Pressed");

 displayInfo(e);

 }

 @Override

 public void keyReleased(KeyEvent e) {

 System.out.println("Key Released");

 displayInfo(e);

 }

 private void displayInfo(KeyEvent e)

 {

 int id = e.getID();

 if (id == KeyEvent.KEY_TYPED)

 {

 System.out.println(e.getKeyChar());

 }

 else

 {

 int keyCode = e.getKeyCode();

 System.out.println("Code = " + keyCode +

 " Text:" + KeyEvent.getKeyText(keyCode));

 }

 if (e.isActionKey())

 System.out.println("Action key pressed!");

 // Arrows, FN keys

 }

Class exercise: Move the red circle around using the WASD keys or arrow keys.

Using an IDE

If you are using an IDE then adding these events and listeners is pretty much done for you by the GUI.

Select the component of interest and then under events select what kind of event you want to handle

and the IDE will create the method for you and you need to fill in the code.

