M19_SAVI1674_06_SE_C19.indd Page 1106 13/03/15 5:27208/ PHOﬂEQEZA@T&%OM 674_SAVITCH/SAVITCH_ABSOLUTE_JAVA6_SE_9780134041 674/‘? E/ MT‘EQ A

1106 CHAPTER 19 Java Never Ends

19.2 Networking with Stream Sockets
Since in order to speak, one must first listen, learn to speak by listening.
MEVLANA RUMI

When computers want to communicate with each other over a network, each computer
must speak the same “language.” In other words, the computers need to communicate

Transmission using the same protocol. One of the most common protocols today is TCP, or the
Control Transmission Control Protocol. For example, the HTTP protocol used to transmit
Protocol Web pages is based on TCP. TCP is a stream-based protocol in which a stream of data
(TCP) is transmitted from the sender to the receiver. TCP is considered a reliable protocol

because it guarantees that data from the sender is received in the same order in which it
was sent. An analogy to TCP is the telephone system. A connection is made when the
phone is dialed and the participants communicate by speaking back and forth. In TCP,
the receiver must first be listening for a connection, the sender initiates the connection,
and then the sender and receiver can transmit data. The program that is waiting for a

server connection is called the server and the program that initiates the connection is called

. the client.
client An alternate protocol is UDP, or the User Datagram Protocol. In UDP, packets of
User data are transmitted but no guarantee is made regarding the order in which the packets
Datagram are received. An analogy to UDP is the postal system. Letters that are sent might be
Protocol received in an unpredictable order, or lost entirely with no notification. Although Java

(UDP) provides support for UDP, we will only introduce TCP in this section.

Sockets
sockets Network programming is implemented in Java using sockets. A socket describes one
end of the connection between two programs over the network. A socket consists
port of an address that identifies the remote computer and a port for both the local and

remote computer. The port is assigned an integer value between 0 and 65,535 that is
used to identify which program should handle data received from the network. Two
applications may not bind to the same port. Typically, ports 0 to 1,024 are reserved for
use by well-known services implemented by your operating system.
B The process of client/server communication is shown in Display 19.6. First, the
_ server waits for a connection by listening on a specific port. When a client connects to
;::;::;ng this port, a new sockeF is. created th.at identifies the remote computer, the remote port,
with Streams and the local port. A similar socket is created on the client. Once the sockets are created
on both the client and the server, data can be transmitted using streams in a manner
very similar to the way we implemented file I/O in Chapter 10.

Display 19.7 shows how to create a simple server that listens on port 7654 for a
connection. Once it receives a connection, a new socket is returned by the accept ()
method. From this socket, we create a BufferedReader, just as if we were reading
from a text file described in Chapter 10. Data is transmitted to the socket using a
DataOutputStream, which is similar to a FileoutputStream. The ServersSocket

—p—

M19_SAVI1674_06_SE_C19.indd Page 1107 13/03/15 5:27208/ PHOﬂEQBZA@T&%OM 674_SAVITCH/SAVITCH_ABSOLUTE_JAVA6_SE_9780134041 674/‘? E/ MT‘EQ A

Networking with Stream Sockets 1107

Display 19.6 Client/Server Network Communication through Sockets

1. The server listens and waits for a connection on port 7654.

Server Computer

port 0
port 1

Server —»| port 7654

program

port 65535

2. The client connects to the server on port 7654. It uses a local port that is assigned
automatically, in this case, port 20314.

Server Computer Client Computer
port 0 port 0
port 1 port 1
Network Cli
Server —| port 7654 < »| port 20314 |<€«— “lient
program e vee program
port 65535 port 65535
The server program can now The Clien.t program can now
communicate over a socket bound communicate over a socket bound
locally to port 7654 and remotely locally to port 20314 and remotely
to the client’s address at port 20314. to the server’s address at port 7654.

and socket classes are in the java.net package, while the Bufferedreader and
DataOutputStrean classes are in the java.io package. Once the streams are created,
the server expects the client to send a name. The server waits for the name with a
call to readnine() on the BufferedrReader object and then sends back the name
concatenated with the current date and time. Finally, the server closes the streams
and sockets.

Display 19.6 shows how to create a client that connects to our date and time server.
First, we create a socket with the name of the computer running the server along with
the corresponding port of 7654. If the server program and client program are running

localhost on the same computer, then you can use localhost as the name of the machine. Your
computer understands that any attempt to connect across a network to the machine
named localhost really corresponds to a connection with itself. Otherwise, the
hostname should be set to the name of the computer (e.g., my.server.com). After a
connection is made, the client creates stream objects, sends its name, waits for a reply,
and prints the reply.

—p—

M19_SAVI1674_06_SE_C19.indd Page 1108 13/03/15 5:27208/ PHOﬂESIQZA%%gjﬂ?AtOM 674_SAVITCH/SAVITCH_ABSOLUTE_JAVA6_SE_9780134041 674/% E/ M%Q A

1108 CHAPTER 19 Java Never Ends

Display 19.7 Date and Time Server (part 1 of 2)

import java.util.Date;

import java.net.ServerSocket;
import java.net.Socket;

import java.io.DataOutputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

N o Uk W N

8 public class DateServer

9 |

10 public static void main(String[] args)

11 {

12 Date now = new Date() ;

13 try

14 {

15 System.out.println("Waiting for a connection on port 7654.");
16 ServerSocket serverSock = new ServerSocket (7654) ;

17 Socket connectionSock = serverSock.accept () ;

18 BufferedReader clientInput = new BufferedReader (

19 new InputStreamReader (connectionSock.getInputStream())) ;
20 DataOutputStream clientOutput = new DataOutputStream
21 connectionSock.getOutputStream()) ;
22 System.out.println("Connection made, waiting for client " +
23 "to send their name.");
24 String clientText = clientInput.readLine() ;
25 String replyText = "Welcome, " + clientText +
26 ", Today is " + now.toString() + "\n";
27 clientOutput.writeBytes (replyText) ;
28 System.out.println("Sent: " + replyText) ;
29 clientOutput.close() ;
30 clientInput.close() ;
31 connectionSock.close () ;
32 serverSock.close () ;
33 }
34 catch (IOException e)
35 {

System.out.println(e.getMessage()) ;

36 }
37 }
38}

M19_SAVI1674_06_SE_C19.indd Page 1109 13/03/15 5:27208/ PHOﬂEﬁS}Z/S%gjﬂ?AtOM 674_SAVITCH/SAVITCH_ABSOLUTE_JAVA6_SE_9780134041 674/% E/ M%Q A

Networking with Stream Sockets

Display 19.7 Date and Time Server (part 2 of 2)

Sample Dialogue Output when the client program in Display 19.8 connects to the server program

Waiting for a connection on port 7654.
Connection made, waiting for client to send their name.
Sent: Welcome, Dusty Rhodes, Today is Sun Mar 1 12:18:21 AKDT 2015

Display 19.8 Date and Time Client (part 1 of 2)

U w NP

® J O

o

11
12
13

14
15

16
17
18
19

20
21

22
23
24

25
26
27
28

import

java.net.Socket;

import java.io.DataOutputStream;

import java.io.BufferedReader;

import
import

java.io.InputStreamReader;
java.io.IOException;

public class DateClient

{

public static void main(String[] args)

{

{

localhost refers to the same, or local,

try machine that the client is running on.
Change this string to the appropriate

String hostname = "localhost"; hostname (e.g., my.server.com) if the
int port = 7654; server is running on a remote machine.

System.out.println("Connecting to server on port " + port);

Socket connectionSock = new Socket (hostname, port);

BufferedReader serverInput = new BufferedReader (
new InputStreamReader (connectionSock.getInputStream())) ;
DataOutputStream serverOutput = new DataOutputStream(
connectionSock.getOutputStream()) ;

System.out.println("Connection made, sending name.");
serverOutput.writeBytes ("Dusty Rhodes\n") ;

System.out.println("Waiting for reply.");
String serverData = serverInput.readLine() ;
System.out.println("Received: " + serverData) ;

serverOutput.close () ;
serverInput.close() ;
connectionSock.close() ;

(continued)

1109

M19_SAVI1674_06_SE_C19.indd Page 1110 13/03/15 5:27/ZGQ/PH01159192!4@T34041 674_SAVITCH/SAVITCH_ABSOLUTE_JAVA6_SE_9780134041 674/TE/M»EQ A

1110 CHAPTER 19 Java Never Ends

Display 19.8 Date and Time Client (part 2 of 2)

29 catch (IOException e)

30 {

31 System.out.println(e.getMessage()) ;

32 }

33 }

34}

Sample Dialogue Output when client program connects to the server program in Display 19.7

Connecting to server on port 7654

Connection made, sending name.

Waiting for reply.

Received: Welcome, Dusty Rhodes, Today is Sun Mar 1 12:18:21 AKDT 2015

Note that the socket and stream objects throw checked exceptions. This means that
their exceptions must be caught or declared in a throws block.

Sockets and Threading

If you run the program in Display 19.7, then you will notice that the server waits,

blocking or blocks, at the serversock.accept () call until a client connects to it. Both the
client and server also block at the readrLine () call if data from the socket is not yet
available. In a client with a GUI, you would notice this as a nonresponsive program
while it is waiting for data. For the server, this behavior makes it difficult to handle
connections with more than one client. After a connection is made with the first
client, the server will become nonresponsive to the client’s requests while it waits for a
second client.

The solution to this problem is to use threads. One thread will listen for new
connections while another thread handles an existing connection. Section 19.1
describes how to create threads and make a GUI program responsive. On the server,
the accept () call is typically placed in a loop and a new thread is created to handle
each client connection:

while (true)

{

Socket connectionSock = serverSock.accept();
ClientHandler handler = new ClientHandler (connectionSock) ;
Thread theThread = new Thread (handler) ;

theThread.start ();

}

In this code, clientHandler is a class that implements Runnable. The constructor
keeps a reference to the socket in an instance variable, and the run() method would
handle all communications. A complete implementation of a threaded server is left as
Programming Projects 19.7 and 19.8.

—p—

M19_SAVI1674_06_SE_C19.indd Page 1111 13/03/15 5:27/ZGQ/PH01159192!4@T34041 674_SAVITCH/SAVITCH_ABSOLUTE_JAVA6_SE_9780134041 674/TE/M»EQ A

JavaBeans 1111

The URL Class

Java’s URL class will retrieve the HTML from a website into a stream while eliminating
several details involved in creating a socket. The URL class also illustrates the flexibility
of streams and the power of polymorphism. Code that reads from the keyboard or
from a file can be used almost verbatim to read from a website; all we need to do is
change the source of the stream that is connected to the Scanner object. To use the
URL class, import java.net.URL, create a URL object, and then use the stream when
creating a Scanner object. From that point on, reading from the scanner will read
data from the URL specified in the URL object. The following code listing will output
the HTML of www.wikipedia.org:

URL website = new
URL ("http://www.wikipedia.org") ;
Scanner inputStream = new Scanner (
new InputStreamReader (
website.openStream())) ;

while (inputStream.hasNextLine ())

String s = inputStream.nextLine() ;
System.out.println(s) ;

}

inputStream.close() ;

Self-Test Exercises

5. What is the purpose of a port in the context of a socket?

6. Consider a threaded server that is expected to have up to 100 clients connected
to it at one time. Why might this server require a large amount of resources such
as memory, disk space, or processor time?

19.3 JavaBeans
Insert tab A into slot B.
Common assembly instruction

JavaBeans JavaBeans refers to a framework that facilitates software building by connecting
software components from diverse sources. Some of the components might be standard
existing pieces of software. Some might be designed for the particular application.
Typically, the various components were designed and coded by different teams. If the
components are all designed within the JavaBeans framework, it simplifies the process
of integrating the components and means that the components produced can more
easily be reused for future software projects. JavaBeans have been widely used. For
example, the AWT and Swing packages were built within the JavaBeans framework.

—p—

