Intro to Swing

Java’s first package to create Graphical User Interfaces (GUIs) was the AWT, or Abstract Window Toolkit.
Swing is an improved version of the AWT and is based on objects and event-driven programming. We
will start by describing events and how to handle them.

Events and Listeners

An event is an object that is a signal to another object known as a listener that does something, or
handles, the event. Sending the event is known as firing the event. For example, when a button is
clicked, the button fires the clicked event and a method may listen for this event and do something in
response.

Exception handling is one form of event-driven programming where the listener is the catch block for
the event.

In a Swing GUI, our events will be things like a mouse click, mouse drag, keypress, etc. A listener object
will have methods that specify what happens when the events are received. These methods are called
event handlers.

The main difference between event-driven programming and the programming you have done so far is
the sequence that things happen. Previously everything started in main and ran in sequential order. In
event-driven programming, you create listeners for events, and the events determine the order. We
have seen some of these already in the graphics programming section. We end up writing methods that
we don’t actually call ourselves, but might be called when some event occurs.

Consider the following program, which pops up a window and lets us close it:

import javax.swing.JFrame;
/**
*
* @author Kenrick
*/
public class JavaApplicationl8 extends JFrame
{
public JavaApplicationl8()
{
super () ;
setSize (810,640);
setDefaultCloseOperation (EXIT ON CLOSE) ;
setVisible (true);
}
/**
* @param args the command line arguments
*/
public static void main (String[] args) {
JavalApplicationl8 app = new JavalApplicationl8();
}

Let’s give an example of listening firing off an event when the user clicks a button. To add a button the
window we can use the JButton object:

import javax.swing.JFrame;
import Jjavax.swing.JButton;

/**

*

* Qauthor Kenrick
*/
public class JavaApplicationl8 extends JFrame

{
public JavaApplicationl8()

{
super () ;
setSize (810, 640);
setDefaultCloseOperation (EXIT ON_ CLOSE) ;

JButton clickme = new JButton ("Click Me") ;
this.add(clickme) ;

setVisible (true) ;
}
/**
* @param args the command line arguments
*/
public static void main (String[] args) {
JavaApplicationl8 app = new JavaApplicationl8();

This creates a button that takes up the entire JFrame (we’ll see shortly how to control this better) that
the user can click, but at this point nothing happens because there is no listener to handle the button
click event.

We can make a listener by creating a class that implements the ActionListener interface. This interface
expects us to have an actionPerformed method:

import Jjava.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class ButtonListener implements ActionListener

{

public void actionPerformed (ActionEvent e)

{

System.out.println(e);

public JavaApplicationl8()
{

super () ;
setSize (810, 640);
setDefaultCloseOperation (EXIT ON CLOSE) ;

JButton clickme = new JButton("Click Me");
clickme.addActionListener (new ButtonListener());
this.add(clickme) ;

setVisible (true) ;

We now get output every time the button is clicked! We could of course do something else inside the
actionPerformed method.

Listeners as Inner Classes

If the listener is only used inside the JFrame, then it makes sense to define the listener as an inner class.
In this case the program would now look like this:

import javax.swing.JFrame;

import javax.swing.JButton;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class JavaApplicationl8 extends JFrame

{

private class ButtonListener implements ActionListener

{

public void actionPerformed (ActionEvent e)

{
System.out.println(e);

public JavaApplicationl8()

{
super () ;
setSize (810, 640);
setDefaultCloseOperation (EXIT ON_ CLOSE) ;

JButton clickme = new JButton("Click Me");
clickme.addActionListener (new ButtonListener());

this.add(clickme) ;

setVisible (true);

/**
* @param args the command line arguments
*/
public static void main(String[] args) {
JavaApplicationl8 app = new JavaApplicationl8();

Anonymous Inner Class

If we are only going to use the inner class in one place, such as the button click event, then we can
create an anonymous inner class right in the spot where it is used! This format looks a little weird at
first, but in the end it can make the classes easier to read because the class is defined where it is
referenced.

public class JavaApplicationl8 extends JFrame

{
public JavaApplicationl8()

{
super () ;
setSize (810, 640);
setDefaultCloseOperation (EXIT ON CLOSE) ;

JButton clickme = new JButton("Click Me");
clickme.addActionListener (new ActionListener ()

{

public void actionPerformed (ActionEvent e)

{

System.out.println("You clicked me");
)7
this.add(clickme) ;

setVisible (true);

Later we will see a method using lambda expressions that is an even shorter way of doing this.

Setting Color

To set the color of a Swing element, we can use the method setBackground(color) or
setForground(color). You will likely need to import java.awt.Color:

clickme.setBackground (Color.red) ;
clickme.setForeground (new Color (0,255,255));

Border Layout Manager

If you do not specify a layout, then Java will use a BorderLayout by default. A layout manager specifies
how items should be added to a JFrame. To specify the layout type we add to the constructor:

setLayout(new BorderLayout());

We need to import java.awt.BorderLayout. In a Border layout, we can add items to the center, north,
west, east, or south of the frame:

BorderLayout . NORTH

BorderLayout. BorderLayout .
WEST EAST

BorderLayout . CENTER

BorderLayout . SOUTH

Here is an example where we add a button the middle, and labels to the north and south. A Label is just
a piece of text.

import javax.swing.JFrame;

import javax.swing.JButton;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.Color;

import javax.swing.JLabel;

import java.awt.BorderLayout;

public class JavaApplicationl8 extends JFrame
{
public JavaApplicationl8()
{
super () ;
setSize (810, 640);
setDefaultCloseOperation (EXIT ON_ CLOSE) ;
setLayout (new BorderLayout());

JButton clickme = new JButton("Click Me");
clickme.addActionListener (new ActionListener ()

{

public void actionPerformed (ActionEvent e)

{

System.out.println("You clicked me");
);
this.add(clickme, BorderLayout.CENTER) ;

JLabel labell = new JLabel ("This is label 1");
this.add(labell, BorderLayout.NORTH) ;

JLabel label2 = new JLabel ("This is label 2");
this.add(label2, BorderLayout.SOUTH) ;

setVisible (true);

}
/~k~k
* @param args the command line arguments
*/
public static void main(String[] args) {
JavaApplicationl8 app = new JavaApplicationl8();

Note that the window resizes the center based on the size of the labels. If we add a component to the
east or west then the button will shrink accordingly:

JLabel label3 = new JLabel ("This is label 3");
this.add(label3, BorderLayout.WEST) ;

If you try to put two components into the same spot then you will only get the last component.
However, we will see shortly that we can add a panel as a component, then put multiple items into the
panel.

Flow Layout Manager

The flow layout manager is the simplest layout manager. It arranges components one after the other,
left to right, in the order you add them. This can be useful for testing purposes as it is quick and easy to
implement.

public JavalApplicationl8()
{

super () ;

setSize (810, 640);
setDefaultCloseOperation (EXIT ON CLOSE) ;
setlLayout (new FlowLayout()):;

JButton clickme = new JButton("Click Me");
clickme.addActionListener (new ActionListener ()

{

public void actionPerformed (ActionEvent e)

{

System.out.println ("You clicked me");
)
this.add (clickme) ;

JLabel labell = new JLabel ("This is label 1");
this.add (labell) ;

JLabel label2 = new JLabel ("This is label 2");
this.add (label?) ;

JLabel label3 = new JLabel ("This is label 3");
this.add (label3);

setVisible (true);

Click Me| | This is label 1 This is label 2 This is label 3

GridLayout Manager

The grid layout manager arranges components in a two-d grid with some number of rows and columns.
With a GridLayotu manager, each entry is the same size. For example:

setLayout (new GridLayout (2,3));

will specify two rows and three columns within the container:

The lines will not be visible unless you do something special to make them seen. Each component is
stretched so that it completely fills its grid position.

Note that if you add more items than fit in the grid, then a new column is added to fit the items. If you
add fewer items than specified in the gird, then there will be two rows and a reduced number of
columns.

When using add, items are placed in the grid left to right, filling the top row, then the second row, and
so forth. You are not allowed to skip any grid positions although you could add something that does not
show and so gives the illusion of skipping a grid position.

public JavaApplicationl8()

{
super () ;
setSize (810, 640);
setDefaultCloseOperation (EXIT ON CLOSE) ;
setLayout (new GridLayout(2,3));

JButton clickme = new JButton("Click Me");
clickme.addActionListener (new ActionListener ()
{
public void actionPerformed (ActionEvent e)
{

System.out.println("You clicked me");

)7
this.add(clickme) ;

for (int i1 = 0; 1 < 5; i++)

{
JLabel 1bl = new JLabel ("This is label " + (i+1));
this.add (1bl) ;

setVisible (true);

Click Me [This is label 1 This is label 2

This is label 3 This is label 4 This is label 5

Null Layout

Finally, we can use the null layout. In the null layout, we specify exact coordinates for each component.
If we go this route, typically you would use an IDE to graphically build the GUI.

super () ;

setSize (810, 640);
setDefaultCloseOperation (EXIT ON CLOSE) ;
setLayout (null) ;

JButton clickme = new JButton("Click Me");
clickme.addActionListener (new ActionListener ()
{
public void actionPerformed (ActionEvent e)

{

System.out.println("You clicked me");

) ;
this.add (clickme) ;
clickme.setBounds (250, 200, 300, 50);

for (int 1 = 0; 1 < 5; i++)

{
JLabel 1bl = new JLabel ("This is label " + (i+1));
this.add (1bl) ;
1bl.setBounds (75, 20 + i*50, 200, 30);

}

setVisible (true);

This is label 1

This is label 2

This is label 3

This is label 4

- Click Me
This is label 5

Panels

A GUI is often organized hierarchically with containers known as panels inside other containers. A panel
is an object of the class JPanel, which is a simple container that just groups together objects. A JPanel
object is analogous to the curly braces we use to group code. It groups smaller objects like buttons and
labels into a larger component (the JPanel). You can then put the JPanel object into a JFrame. Thus, a
JPanel is used to subdivide a JFrame (or other container) into different areas.

Import a panel with javax.swing.JPanel.
We can apply a layout to a panel.

In the example below we use a BorderLayout with a panel containing two labels in the SOUTH using a
flow layout, then button in the NORTH of the border:

public JavalApplicationl8()

{
super () ;
setSize (810,640);
setDefaultCloseOperation (EXIT ON CLOSE) ;
setLayout (new BorderLayout());

JButton clickme = new JButton("Click Me");
clickme.addActionListener (new ActionListener ()
{
public void actionPerformed (ActionEvent e)
{

System.out.println("You clicked me");

)7
this.add(clickme, BorderLayout.NORTH) ;

JPanel panel = new JPanel();

panel.setlLayout (new FlowLayout());
this.add (panel, BorderLayout.SOUTH) ;

JLabel labell = new JLabel ("Hi there");
panel.add(labell);
JLabel label2 = new JLabel ("Whats up");
panel.add(label?2);

setVisible (true) ;

Hi there VWhats up

Here is an example where we make a panel containing three panels (grid layout) in the center, then a
panel in the south containing three buttons. Each button changes the color of one of the panels in the
center.

public JavaApplicationl8()

{
super () ;
setSize (810, 640);
setDefaultCloseOperation (EXIT ON CLOSE) ;
setLayout (new BorderLayout ());

// Master panel in the middle
JPanel middle = new JPanel () :;
middle.setLayout (new GridLayout (1,3));
this.add (middle, BorderLayout.CENTER) ;

// Three panels inside the middle panel

JPanel redPanel = new JPanel();
JPanel whitePanel = new JPanel () ;
JPanel bluePanel = new JPanel ()

middle.add (redPanel) ;
middle.add (whitePanel) ;
middle.add (bluePanel) ;

JPanel bottom = new JPanel ()
bottom.setLayout (new FlowLayout());
this.add (bottom, BorderLayout.SOUTH) ;

JButton redButton = new JButton ("Red");
redButton.addActionListener (new ActionListener ()
{
public void actionPerformed (ActionEvent e)

{

redPanel.setBackground (Color.red) ;

);

bottom.add (redButton) ;

JButton whiteButton = new JButton ("White");

whiteButton.addActionlListener (new ActionlListener ()
{

public void actionPerformed (ActionEvent e)

{

whitePanel.setBackground (Color.white) ;

) ;
bottom.add (whiteButton) ;
JButton blueButton = new JButton ("Blue");
blueButton.addActionListener (new ActionListener ()
{
public void actionPerformed (ActionEvent e)

{
bluePanel.setBackground(Color.blue) ;

) ;
bottom.add (blueButton) ;

setVisible (true);

There is some repetition creating the button click event. If we like, we could share the same listener for
all three buttons. The event argument sends the text of the button clicked, so we could distinguish
which button was clicked. This method is not necessarily better, it will depend on your application.

If using this technique, the JFrame class itself typically implements ActionListener. We add the
actionPerformed method to the same class and move the JPanels to private class variables so we can
access them from the action listener.

public class JavaApplicationl8 extends JFrame implements ActionListener

{

private JPanel redPanel;
private JPanel whitePanel;
private JPanel bluePanel;

@Override
public void actionPerformed (ActionEvent e)

{

{

String cmd = e.getActionCommand () ;
if (cmd.equals ("Red"))
{
redPanel.setBackground(Color.red) ;
}
else if (cmd.equals ("White"))
{
whitePanel.setBackground(Color.white) ;
}
else if (cmd.equals("Blue"))

{

bluePanel.setBackground (Color.blue) ;

public JavalApplicationl8()

super () ;

setSize (810, 640);
setDefaultCloseOperation (EXIT ON CLOSE) ;
setLayout (new BorderLayout ());

// Master panel in the middle
JPanel middle = new JPanel () ;
middle.setLayout (new GridLayout(1l,3));
this.add (middle, BorderLayout.CENTER) ;

// Three panels inside the middle panel
redPanel = new JPanel ()

whitePanel = new JPanel () ;
bluePanel = new JPanel();
middle.add (redPanel) ;

(
middle.add (whitePanel);

middle.add (bluePanel) ;

JPanel bottom = new JPanel ()
bottom.setLayout (new FlowLayout());
this.add(bottom, BorderLayout.SOUTH) ;

JButton redButton = new JButton ("Red");
redButton.addActionListener (this) ;
bottom.add (redButton) ;

JButton whiteButton = new JButton ("White");
whiteButton.addActionListener (this);
bottom.add (whiteButton) ;

JButton blueButton = new JButton ("Blue");
blueButton.addActionListener (this);
bottom.add (blueButton) ;

setVisible (true) ;
}
/**
* @param args the command line arguments
*/
public static void main (String[] args) {
JavaApplicationl8 app = new JavaApplicationl8();

The following diagram shows the relationship between AWT and Swing for some common classes.

Object

N T

BorderLayout

FlowLayout

GridLayout I

Container

AWT

\ java.awt
; JComponent

Swing

javax.swing

JFrama
JPanel
< AbstractButton)
JLabel JMenuBar I ‘H‘Hh““ﬁﬁh_
JMenultem I
(JTextComponent) \
JButton
— ‘\‘\\\k JMenu I
JTexthrea I
JTextField
(Zbstract Class) A line between two boxes means the lower
class is derived from (extends) the higher one.

Concrete Class I

