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Binary Search Trees

What is a Binary Search Tree?

• A binary tree where each node is an object
• Each node has a key value, left child, and right child (might be empty)

• Each node satisfies the binary search tree property
• Let x be a node in the BST.  The left child’s key must be <= x’s key.  The right 

child’s key must be >= x’s key
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Implementing Binary Trees
• We can use arrays or linked structures to implement binary trees

• If using an array, each element stores a structure that has an 
information field and two “pointer” fields containing the indexes 
of the array locations of the left and right children

• The root of the tree is always in the first cell of the array, and a 
value of -1 indicates an empty child
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Implementing Binary Trees (continued)

• Implementing binary tree arrays does have drawbacks
• We need to keep track of the locations of each node, and these have to be located 

sequentially

• Deletions are also awkward, requiring tags to mark empty cells, or moving elements 
around, requiring updating values

• Consequently, while arrays are convenient, we’ll usually use a linked 
implementation

• In a linked implementation, the node is defined by a class, and consists of 
an information data member and two pointer data members

• The node is manipulated by methods defined in another class that 
represents the tree
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Searching a BST

Runs in O(h) time but this could be O(n) in the worst case!
O(lgn) if the tree is balanced!

Finding min and max?

Tree Traversal

• Tree traversal is the process of visiting each node in a tree data 
structure exactly one time

• This definition only specifies that each node is visited, but does not 
indicate the order of the process

• Hence, there are numerous possible traversals; in a tree of n nodes 
there are n! traversals

• Two especially useful traversals are depth-first traversals and 
breadth-first traversals
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Tree Traversal (continued)

• Breadth-First Traversal
• Breadth-first traversal proceeds level-by-level from top-down generally 

visiting each level’s nodes left-to-right

• This can be easily implemented using a queue

• If we consider a top-down, left-to-right breadth-first traversal, we start by 
placing the root node in the queue

• We then remove the node at the front of the queue, and after visiting it, we 
place its children (if any) in the queue

• This is repeated until the queue is empty
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Breadth-First Traversal (continued)

• The following diagram shows a traversal of the tree from Figure 6.6c, 
using the queue-based breadth-first traversal
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The queue (middle) and output (right) from a breadth-first traversal of the tree from figure 6.6c (left).
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Tree Traversal (continued)

• Breadth-First Traversal (continued)
• An implementation of this is shown in Figure 6.10
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Depth-First Traversal

• Depth-first traversal proceeds by following left- (or right-) hand branches as 
far as possible

• The algorithm then backtracks to the most recent fork and takes the right-
(or left-) hand branch to the next node

• It then follows branches to the left (or right) again as far as possible

• This process continues until all nodes have been visited

• While this process is straightforward, it doesn’t indicate at what point the 
nodes are visited; there are variations that can be used

• We are interested in three activities: traversing to the left, traversing to the 
right, and visiting a node
• These activities are labeled L, R, and V, for ease of representation
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Depth-First Traversal (continued)

• Based on earlier discussions, we want to perform the traversal in an 
orderly manner, so there are six possible arrangements:
• VLR, VRL, LVR, LRV, RVL, and RLV

• Generally, we follow the convention of traversing from left to right, 
which narrows this down to three traversals:
• VLR – known as preorder traversal

• LVR – known as inorder traversal

• LRV – known as postorder traversal

• These can be implemented with a small amount of code!
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Depth First Search Implementations
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Depth First Search Implementations
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Depth First Search Implementations
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Depth-First Traversal (continued)

• While the code is simple, the power lies in the recursion supported by 
the run-time stack, which can place a heavy burden on the system

• A non-recursive implementation of the traversal algorithms is possible 
but we’d generally have to manage our own stack

• It is also possible to incorporate the “stack” into the design of the tree
itself
• Done using threads, pointers to the predecessor and successor of a node

based on an inorder traversal

• Trees with threads are called threaded trees
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Stackless Depth-First Traversal: Threaded 
Trees (continued)
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(a) A threaded tree and (b) an inorder traversal’s path
in a threaded tree with right successors only
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Successor
• Finding the node with the next 

largest (or equal) value

O(h) runtime

Insertion
• Searching a binary tree does not modify the tree
• Traversals may temporarily modify the tree, but it is usually left in its 

original form when the traversal is done
• Operations like insertions, deletions, modifying values, merging trees, and 

balancing trees do alter the tree structure
• We’ll look at how insertions are managed in binary search trees first
• In order to insert a new node in a binary tree, we have to be at a node 

with a vacant left or right child
• This is performed in the same way as searching:

• Compare the value of the node to be inserted to the current node
• If the value to be inserted is smaller, follow the left subtree; if it is larger, follow the 

right subtree
• If the branch we are to follow is empty, we stop the search and insert the new 

node as that child
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Insertion (continued)
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Insertion

O(h) runtime



9/20/2018

11

Deletion

• Deleting a node z from a BST T

1. If z has no children the simply remove it by modifying its parent to 
replace z with nil as its child

2. If z has just one child then we elevate that child to take z’s position in the 
tree by modifying z’s parent to replace z by z’s child

3. If z has two children then:    (deletion by copying)
• Find z’s successor y – which must be in z’s right subtree – and have y take z’s position 

in the tree

• As a successor y in the right subtree, y has at most one child. Remove y using rule 2

• The rest of z’s original right subtree becomes y’s right subtree and z’s left subtree
becomes y’s left subtree

Delete Examples
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Deletion

Delete node z
First two cases handled by:

If left child is nil, transplant with 
right child

If right child is nil, transplant with 
left child

Delete with two children
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Transplant
• Helper function for deletion

• Node v is a child of node u  (v could be nil)

• Replaces u with v and updates parent of u to have v as left or right child

• Handles first two cases; partially handles third case but need to 
update children of v

u

v

Deletion
Tree-Delete(T,z)
if z.left == NIL

Transplant(T, z, z.right)
else if z.right == NIL

Transplant(T, z, z.left)
else

y = Tree-Minimum(z.right)
if y.p != z

Transplant(T,y,y,right)
y.right = z.right
y.right.p = y

Transplant(T, z, y)
y.left = z.left
y.left.p = y
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BST

• Worst case?

• Best case?

• Expectation for randomly built BST?


