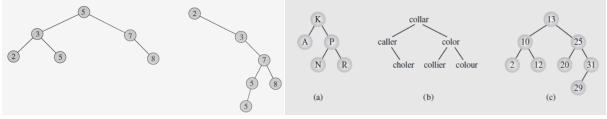
Binary Search Trees

What is a Binary Search Tree?

- A binary tree where each node is an object
 - Each node has a key value, left child, and right child (might be empty)
- Each node satisfies the binary search tree property
 - Let x be a node in the BST. The left child's key must be <= x's key. The right child's key must be >= x's key



3

Implementing Binary Trees

- We can use arrays or linked structures to implement binary trees
- If using an array, each element stores a structure that has an information field and two "pointer" fields containing the indexes of the array locations of the left and right children
- The root of the tree is always in the first cell of the array, and a value of -1 indicates an empty child

Index 0	Info 13	Left 4	Right 2
1	31	6	-1
2	25	7	1
3	12	-1	-1
4	10	5	3
5	2	-1	-1
6	29	-1	-1
7	20	-1	-1

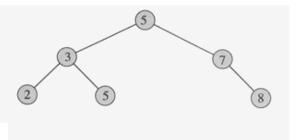
Implementing Binary Trees (continued)

- Implementing binary tree arrays does have drawbacks
 - We need to keep track of the locations of each node, and these have to be located sequentially
 - Deletions are also awkward, requiring tags to mark empty cells, or moving elements around, requiring updating values
- Consequently, while arrays are convenient, we'll usually use a linked implementation
- In a linked implementation, the node is defined by a class, and consists of an information data member and two pointer data members
- The node is manipulated by methods defined in another class that represents the tree

Searching a BST

TREE-SEARCH(x, k)

- 1 **if** x = NIL or k = key[x]
- 2 **then return** *x*
- 3 **if** k < key[x]
- 4 **then return** TREE-SEARCH(left[x], k)
- 5 **else return** TREE-SEARCH(*right*[x], k)



Runs in O(h) time but this could be O(n) in the worst case! O(lgn) if the tree is balanced!

Finding min and max?

Tree Traversal

- *Tree traversal* is the process of visiting each node in a tree data structure exactly one time
- This definition only specifies that each node is visited, but does not indicate the order of the process
- Hence, there are numerous possible traversals; in a tree of *n* nodes there are *n*! traversals
- Two especially useful traversals are *depth-first traversals* and *breadth-first traversals*

Tree Traversal (continued)

- Breadth-First Traversal
 - Breadth-first traversal proceeds level-by-level from top-down generally visiting each level's nodes left-to-right
 - This can be easily implemented using a queue
 - If we consider a top-down, left-to-right breadth-first traversal, we start by placing the root node in the queue
 - We then remove the node at the front of the queue, and after visiting it, we place its children (if any) in the queue
 - This is repeated until the queue is empty

Breadth-First Traversal (continued)

• The following diagram shows a traversal of the tree from Figure 6.6c, using the queue-based breadth-first traversal

Tree		Queue			Output
13	13				
	10	25			13
10 25	25	2	12		13, 10
2 12 20 31	2	12	20	31	13, 10, 25
	12	20	31		13, 10, 25, 2
29	20	31			13, 10, 25, 2, 12
	31				13, 10, 25, 2, 12, 20
	29				13, 10, 25, 2, 12, 20, 31
					13, 10, 25, 2, 12, 20, 31, 29

Tree Traversal (continued)

• Breadth-First Traversal (continued)

• An implementation of this is shown in Figure 6.10

```
template<class T>
void BST<T>::breadthFirst() {
    Queue<BSTNode<T>*> queue;
    BSTNode<T>*> p = root;
    if (p != 0) {
        queue.enqueue(p);
        while (!queue.empty()) {
            p = queue.dequeue();
            visit(p);
            if (p->left != 0)
                queue.enqueue(p->left);
            if (p->right != 0)
                queue.enqueue(p->right);
        }
    }
}
```

Depth-First Traversal

- Depth-first traversal proceeds by following left- (or right-) hand branches as far as possible
- The algorithm then backtracks to the most recent fork and takes the right-(or left-) hand branch to the next node
- It then follows branches to the left (or right) again as far as possible
- This process continues until all nodes have been visited
- While this process is straightforward, it doesn't indicate at what point the nodes are visited; there are variations that can be used
- We are interested in three activities: traversing to the left, traversing to the right, and visiting a node
 - These activities are labeled L, R, and V, for ease of representation

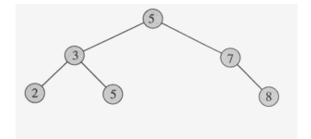
Depth-First Traversal (continued)

- Based on earlier discussions, we want to perform the traversal in an orderly manner, so there are six possible arrangements:
 - VLR, VRL, LVR, LRV, RVL, and RLV
- Generally, we follow the convention of traversing from left to right, which narrows this down to three traversals:
 - VLR known as preorder traversal
 - LVR known as *inorder traversal*
 - LRV known as postorder traversal
- These can be implemented with a small amount of code!

Data Structures and Algorithms in C++, Fourth Edition

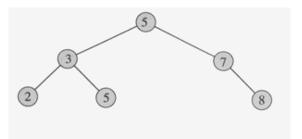
Depth First Search Implementations

```
template<class T>
void BST<T>::inorder(BSTNode<T> *p) {
    if (p != 0) {
        inorder(p->left);
        visit(p);
        inorder(p->right);
    }
}
```



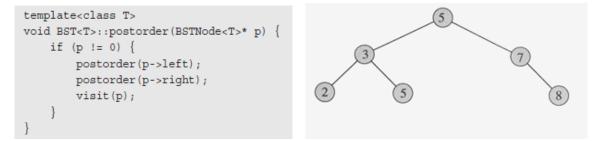
Depth First Search Implementations

```
template<class T>
void BST<T>::preorder(BSTNode<T> *p) {
    if (p != 0) {
        visit(p);
        preorder(p->left);
        preorder(p->right);
    }
}
```



13

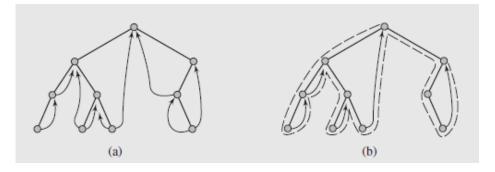
Depth First Search Implementations



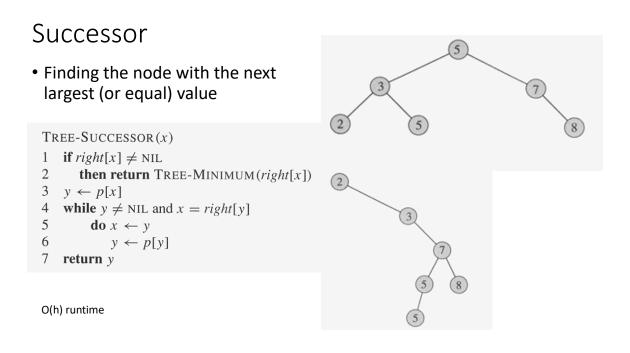
Depth-First Traversal (continued)

- While the code is simple, the power lies in the recursion supported by the run-time stack, which can place a heavy burden on the system
- A non-recursive implementation of the traversal algorithms is possible but we'd generally have to manage our own stack
- It is also possible to incorporate the "stack" into the design of the tree itself
 - Done using **threads**, pointers to the predecessor and successor of a node based on an inorder traversal
 - Trees with threads are called threaded trees

Stackless Depth-First Traversal: Threaded Trees (continued)



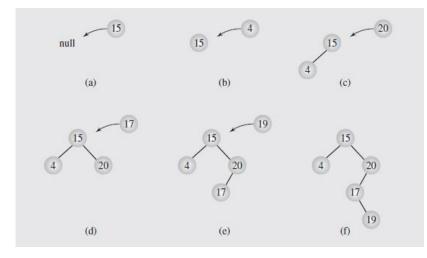
(a) A threaded tree and (b) an inorder traversal's path in a threaded tree with right successors only



Insertion

- Searching a binary tree does not modify the tree
- Traversals may temporarily modify the tree, but it is usually left in its original form when the traversal is done
- Operations like insertions, deletions, modifying values, merging trees, and balancing trees do alter the tree structure
- We'll look at how insertions are managed in binary search trees first
- In order to insert a new node in a binary tree, we have to be at a node with a vacant left or right child
- This is performed in the same way as searching:
 - Compare the value of the node to be inserted to the current node
 - If the value to be inserted is smaller, follow the left subtree; if it is larger, follow the right subtree
 - If the branch we are to follow is empty, we stop the search and insert the new node as that child

Insertion (continued)



Insertion

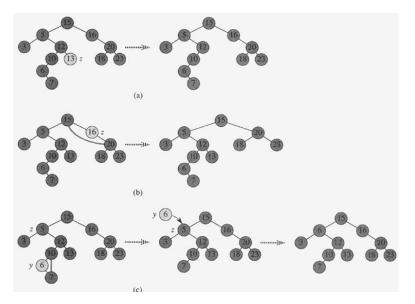
Tri	EE-INSERT (T, z)		5	
1	$y \leftarrow \text{NIL}$			
2	$x \leftarrow root[T]$	(3	7
3	while $x \neq \text{NIL}$	×	L.	Q
4	do $y \leftarrow x$		\sim	
5	if $key[z] < key[x]$	(2)	(5)	(8)
6	then $x \leftarrow left[x]$		0	
7	else $x \leftarrow right[x]$			
8	$p[z] \leftarrow y$			
9	if $y = NIL$			
10	then $root[T] \leftarrow z$	\triangleright Tree T was empty		
11	else if $key[z] < key[y]$	1.2		
12	then $left[y] \leftarrow z$			
13	else $right[y] \leftarrow z$			

O(h) runtime

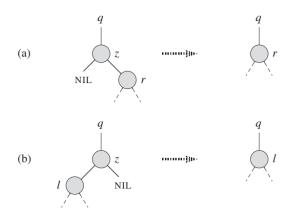
Deletion

- Deleting a node z from a BST T
- 1. If z has no children the simply remove it by modifying its parent to replace z with nil as its child
- 2. If z has just one child then we elevate that child to take z's position in the tree by modifying z's parent to replace z by z's child
- 3. If z has two children then: (deletion by copying)
 - Find z's successor y which must be in z's right subtree and have y take z's position in the tree
 - As a successor y in the right subtree, y has at most one child. Remove y using rule 2
 - The rest of z's original right subtree becomes y's right subtree and z's left subtree becomes y's left subtree

Delete Examples



Deletion

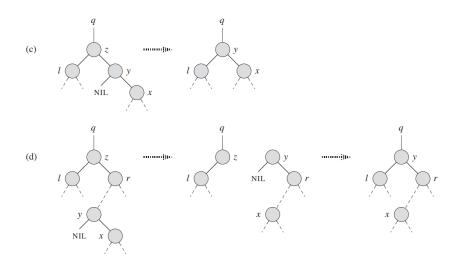


Delete node z First two cases handled by:

If left child is nil, transplant with right child

If right child is nil, transplant with left child

Delete with two children



Transplant

- Helper function for deletion
 - Node v is a child of node u (v could be nil)
 - Replaces u with v and updates parent of u to have v as left or right child
- Handles first two cases; partially handles third case but need to update children of v

```
TRANSPLANT(T, u, v)1if u.p == NIL2T.root = v3elseif u == u.p.left
```

- 4 u.p.left = v5 **else** u.p.right = v
- 6 if $v \neq \text{NIL}$

```
7 v.p = u.p
```


Deletion

```
Tree-Delete(T,z)

if z.left == NIL

Transplant(T, z, z.right)

else if z.right == NIL

Transplant(T, z, z.left)

else

y = Tree-Minimum(z.right)

if y.p != z

Transplant(T,y,y,right)

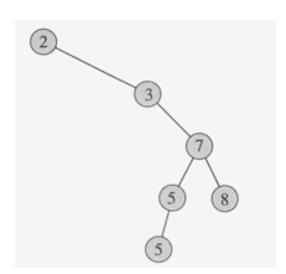
y.right = z.right

y.right.p = y

Transplant(T, z, y)

y.left = z.left

y.left.p = y
```



BST

- Worst case?
- Best case?
- Expectation for randomly built BST?