9/20/2018

Binary Search Trees

What is a Binary Search Tree?

* A binary tree where each node is an object
* Each node has a key value, left child, and right child (might be empty)

* Each node satisfies the binary search tree property

* Let x be a node in the BST. The left child’s key must be <= x’s key. The right
child’s kev must be >= x’s kev

5) @)
)\ & K collar
L «\ \ A P caller color
@/(J\@ ® - /\ NN /N / \
- - { \ N R choler collier colour 2 12

29
(a) (b) (c)
&)

9/20/2018

Implementing Binary Trees

* We can use arrays or linked structures to implement binary trees

* If using an array, each element stores a structure that has an
information field and two “pointer” fields containing the indexes
of the array locations of the left and right children

* The root of the tree is always in the first cell of the array, and a
value of -1 indicates an empty child

Index Info Left Right
0 13 4 2

31 6

1
2
3 12 -1
4

Implementing Binary Trees (continued)

* Implementing binary tree arrays does have drawbacks

* We need to keep track of the locations of each node, and these have to be located
sequentially

* Deletions are also awkward, requiring tags to mark empty cells, or moving elements
around, requiring updating values
* Consequently, while arrays are convenient, we’ll usually use a linked
implementation

* In a linked implementation, the node is defined by a class, and consists of
an information data member and two pointer data members

* The node is manipulated by methods defined in another class that
represents the tree

Searching a BST

TREE-SEARCH(x, k)

if x = NIL or k£ = key[x]
then return x

if k < key[x]
then return TREE-SEARCH (left[x], k)
else return TREE-SEARCH (right[x], k)

Lh B WM o

Runs in O(h) time but this could be O(n) in the worst case!
O(lgn) if the tree is balanced!

Finding min and max?

Tree Traversal

* Tree traversal is the process of visiting each node in a tree data
structure exactly one time

* This definition only specifies that each node is visited, but does not
indicate the order of the process

* Hence, there are numerous possible traversals; in a tree of n nodes
there are n! traversals

* Two especially useful traversals are depth-first traversals and
breadth-first traversals

9/20/2018

9/20/2018

Tree Traversal (continued)

* Breadth-First Traversal

* Breadth-first traversal proceeds level-by-level from top-down generally
visiting each level’s nodes left-to-right

* This can be easily implemented using a queue

* If we consider a top-down, left-to-right breadth-first traversal, we start by
placing the root node in the queue

* We then remove the node at the front of the queue, and after visiting it, we
place its children (if any) in the queue

* This is repeated until the queue is empty

Breadth-First Traversal (continued)

* The following diagram shows a traversal of the tree from Figure 6.6c,
using the queue-based breadth-first traversal

29 13,10, 25, 2,12, 20, 31

Tree Queue Output
o EE N
o \ [10 | 25] \ | 13
10 25 [25 [2 [12] | 13,10
Y . [2 [12]2 [31| 13,10, 25
3 * s -4 [12 [20 [31] | 13,10, 25, 2
Eﬂ;/ [20 [31] | | 13,10, 25,2, 12
[31] \ \ | 13, 10, 25, 2, 12, 20
(2o [[[|
[[1

13,10, 25, 2,12, 20, 31, 29

9/20/2018

Tree Traversal (continued)

* Breadth-First Traversal (continued)
* An implementation of this is shown in Figure 6.10

template<class T>
void BST<T=::breadthFirst(} {
Queue<BSTNode<T>*> queue;
BSTNode<T> *p = root;
if (p 1= 0) {
queue. enqueue (p) ;
while (!queue.empty()) {
P = queue.dequeue();
visit(p);
if (p-sleft != 0)
queue . enqueue (p->left) ;
if (p-s>right != 0)
queue.enqueue (p->right) ;

Depth-First Traversal

* Depth-first traversal proceeds by following left- (or right-) hand branches as
far as possible

* The algorithm then backtracks to the most recent fork and takes the right-
(or left-) hand branch to the next node

* It then follows branches to the left (or right) again as far as possible
* This process continues until all nodes have been visited

* While this process is straightforward, it doesn’t indicate at what point the
nodes are visited; there are variations that can be used
* We are interested in three activities: traversing to the left, traversing to the
right, and visiting a node
* These activities are labeled L, R, and V, for ease of representation

10

9/20/2018

Depth-First Traversal (continued)

* Based on earlier discussions, we want to perform the traversal in an
orderly manner, so there are six possible arrangements:
* VLR, VRL, LVR, LRV, RVL, and RLV

* Generally, we follow the convention of traversing from left to right,
which narrows this down to three traversals:
* VLR — known as preorder traversal
* LVR —known as inorder traversal
* LRV —known as postorder traversal

* These can be implemented with a small amount of code!

Data Structures and Algorithms in C++, Fourth Edition 11

Depth First Search Implementations

template<class T» _l&h\
void BST<T>::inorder (BSTNode<T> *p) {] —
if (p 1= 0) | —~ S~

q [
inorder (p->left); . I\'?
visit(p); \
inorder (p->right) ; G 8
norder (p->rig \E .\E:I (\ﬁ

[

12

9/20/2018

Depth First Search Implementations

template<class T o
wvoid BST<T>::precorder (BSTNode<T> *p) |

if (p t= 0) {
visit(p); e 7
precrder(p-=left);
@ © 5

preorder (p->right) ;

13

Depth First Search Implementations

template<class T= o

void BST<T=::postorder (BSTNode<T>* p) |
if (p = 0) { e
postorder (p->left) ; 7
postorder (p->right) ; e 9
8

visit(p);

14

9/20/2018

Depth-First Traversal (continued)

* While the code is simple, the power lies in the recursion supported by
the run-time stack, which can place a heavy burden on the system

* A non-recursive implementation of the traversal algorithms is possible
but we’d generally have to manage our own stack

* |t is also possible to incorporate the “stack” into the design of the tree
itself

* Done using threads, pointers to the predecessor and successor of a node
based on an inorder traversal

* Trees with threads are called threaded trees

15

Stackless Depth-First Traversal: Threaded
Trees (continued)

(a)

(a) A threaded tree and (b) an inorder traversal’s path
in a threaded tree with right successors only

16

9/20/2018

Successor

* Finding the node with the next
largest (or equal) value

TREE-SUCCESSOR (x)
1 if right[x] # NIL

2 then return TREE-MINIMUM (right[x]) @

3y <« plx] ¥\

4 while y # NIL and x = right[y] 3)

5 dox <« y l‘\

6 y < plyl T

7 returny '?-$
‘3< ®
f

O(h) runtime '/5,1

Insertion

* Searching a binary tree does not modify the tree

* Traversals may temporarily modify the tree, but it is usually left in its
original form when the traversal is done

* Operations like insertions, deletions, modifying values, merging trees, and
balancing trees do alter the tree structure

* We'll look at how insertions are managed in binary search trees first

* In order to insert a new node in a binary tree, we have to be at a node
with a vacant left or right child

* This is performed in the same way as searching:
* Compare the value of the node to be inserted to the current node
* If the value to be inserted is smaller, follow the left subtree; if it is larger, follow the
right subtree
* If the branch we are to follow is empty, we stop the search and insert the new
node as that child

18

9/20/2018

Insertion (continued)

— 15 o 4 = 20
null 15 15
&
4
(a) (b) (c)
= L— 19
15 15 15
AN N\ N
4 20 4 20 4 20
/ /
17 17
19
(d) (e) ()
19
Insertion
TREE-INSERT(T, z)
1 y <« NIL
2 x <« root|T]
3 while x # NIL
4 doy « x
5 if key[z] < key[x]
6 then x <« left[x]
7 else x <« right[x]
8 plz]l «y
9 ify=nNIL
10 then root[T] « z > Tree T was empty
11 else if key[z] < key[y]
12 then left[y] < z
13 else right[y] « z

O(h) runtime

10

9/20/2018

Deletion

* Deletinga node zfromaBSTT

1. If z has no children the simply remove it by modifying its parent to
replace z with nil as its child

2. If z has just one child then we elevate that child to take z’s position in the
tree by modifying z’s parent to replace z by z’s child

3. If zhastwo children then: (deletion by copying)
* Find z’s successor y — which must be in z’s right subtree — and have y take z’s position

in the tree
* As asuccessory in the right subtree, y has at most one child. Remove y using rule 2

* The rest of z’s original right subtree becomes y’s right subtree and z’s left subtree
becomes y’s left subtree

Delete Examples

11

9/20/2018

q q
Delete node z
First two cases handled by:
(a) Z iy r
NIL , hf left child is nil, transplant with
right child
If right child is nil, transplant with
a q left child
(b) z R T é /
1 NIL ' '

Delete with two children

12

9/20/2018

Transplant

* Helper function for deletion
* Node v is a child of node u (v could be nil)
* Replaces u with v and updates parent of u to have v as left or right child

* Handles first two cases; partially handles third case but need to
update children of v

TRANSPLANT(T, u, v)
1 ifu.p==NIL u
2 T.root = v
3 ./
\"

elseif u == u.p.left
4 u.p.left = v
S5 elseu.p.right = v
6 if v # NIL
7 V.p = u.p

Deletion

Tree-Delete(T,z) f’E
if z.left == NIL
Transplant(T, z, z.right)
else if z.right == NIL
Transplant(T, z, z.left)
else
y = Tree-Minimum(z.right)
ifypl=z
Transplant(T,y,y,right)
y.right = z.right
y.right.p =y
Transplant(T, z, y)
y.left = z.left
y.left.p =y

13

BST

* Worst case?
* Best case?
* Expectation for randomly built BST?

9/20/2018

14

