Group Problem Set \#9

Given the array a = [40 1030705060 20] the following depicts the array after each partition of the selection algorithm to find the $4^{\text {th }}$ largest value. The element at index p is used as the pivot element.
$a=[40103070506020$]
selection($a, 0,6,4$)
$p=0, r=6, i=4$
partition around $a[0]=40, q=2: \quad a=[20103070506040]$
$\mathrm{k}=\mathrm{q}-\mathrm{p}+1=2-0+1=3$
since $i>k$, selection($a, q+1, r, i-k)=\operatorname{selection}(a, 3,6,1)$
$p=3, r=6, i=1$
partition around $\mathrm{a}[3]=70, \mathrm{q}=5: \quad \mathrm{a}=[20103040506070$]
$\mathrm{k}=\mathrm{q}-\mathrm{p}+1=5-3+1=3$
since $\mathrm{i}<=\mathrm{k}$, selection($\mathrm{a}, \mathrm{p}, \mathrm{q}, \mathrm{i})=$ selection($\mathrm{a}, 3,5,1$)

$$
p=3, r=5, i=1
$$

partition around $a[3]=40, q=3: \quad a=[20103040506070]$

$$
k=q-p+1=3-3+1=1
$$

since $i<=k$, selection $(a, p, q, i)=$ selection $(a, 3,3,1)$

$$
p=3, r=3, i=1
$$

Since $3=3$ return a[3]=40

Perform the same sequence of steps except run it on the quicksort algorithm instead of the selection algorithm.

```
def quickSort(alist, p, r):
    if p>=r:
        return
    q = partition(alist, p, r)
    quickSort(alist, p, q)
    quickSort(alist, q+1, r)
```

