
Linked Lists 
 

You should have seen linked lists already from your previous programming course, but we’ll still give a 

quick overview and then talk about variations of linked lists. 

Arrays are useful in many applications but suffer from two significant limitations: 

1. The size of the array must be known at the time the code is compiled 

2. The elements of the array are the same distance apart in memory, requiring potentially 

extensive shifting when inserting a new element 

This can be overcome by using linked lists, collections of independent memory locations (nodes) that 

store data and links to other nodes.  Moving between the nodes is accomplished by following the links, 

which are the addresses of the nodes. There are numerous ways to implement linked lists, but the most 

common utilizes pointers, providing great flexibility. 

The simplest type of linked list is a singly linked list.  We have a “node” which is generally a class or a 

struct.  The node contains data and a pointer to the next node in the list. The last node in the list has a 

null pointer. 

Here is a simple node definition: 

 class IntSLLNode 

{ 

 public: 

    IntSLLNode() { 

  next = 0; 

    } 

    IntSLLNode(int i, IntSLLNode *in = 0){ 

  info = i; 

   next = in; 

    } 

    int info; 

    IntSLLNode *next; 

 } 

 

Here is a sample list we could build with: 

 IntSLLNode *p = new IntSLLNode(10); 

 p->next = new IntSLLNode(8); 



 

  

Let’s cover some common operations on linked lists: 

• Insertion 

• Deletion 

• Search 

 

Insertion 

We generally have three places we can insert a node into the list:  The front, the end, and the middle. 

Inserting in the front requires us to do the following: 

1. temp = new Node 

2. temp->info = value 

3. temp->next = head 

4. head = temp 

Inserting a node at the end of the list requires we have a pointer to the last node in the list. We can 

either maintain this ourselves or loop through the list from the head to the end to get the tail. 

1. temp = new Node 

2. temp->info = value 

3. temp->next = null 

4. tail->next = temp 

5. tail = temp 

Note that if the list is empty then we will fail on step 4, so we typically have to make a special check for 

empty lists to handle adding or removing elements. 



Inserting into the middle of the list requires a pointer to the node we want to insert after.  If p points to 

the node we want to insert the new data after: 

1. temp = new Node 

2. temp->info = value 

3. temp->next = p->next 

4. p->next = temp 

 

Deletion 

First, let’s look at deleting from the head of the list.  If the list is empty, then there is nothing to do.  You 

should make sure to check for this condition or you can get errors accessing null pointers!  Otherwise we 

simply move to the next item: 

 temp = head; 

 head = head->next; 

 delete temp; 

 

Deleting from the middle of the list requires a pointer to the node BEFORE the node you want to delete.  

Let’s say p is the pointer to the “previous” node before the one we want to delete. Then: 

 temp = p->next; 

 p->next = temp->next; 

 delete temp; 

 

Search 

Searching for an item in the list requires simply iterating through the list until reaching the desired item, 

or null.  The expected search time is O(n).  

 

Doubly-Linked Lists 

A doubly-linked list maintains pointers in both directions. For example, with a singly linked list, if we 

want to delete the tail, we need to iterate through the list to get to the node pointing to the tail. To 

address this problem, and others such as deleting from the middle of the list, we can add a second 

pointer to each node that points to the previous node. 



 

 

We now have one more variable in our class.  Here is a version that uses templates so we can make a 

doubly-linked list of any type.  In this example we only implement two doubly-linked list functions, 

adding to the tail, and deleting from the tail: 

#include <iostream> 
#include <string> 
 
using namespace std; 
 
template<class T> 
class DLLNode 
{ 
public: 
 DLLNode(); 
 DLLNode(const T &el, DLLNode *n, DLLNode *p); 
 T info; 
 DLLNode *next, *prev; 
}; 
 
template<class T> 
DLLNode<T>::DLLNode() 
{ 
 next = prev = nullptr; 
} 
 
template<class T> 
DLLNode<T>::DLLNode(const T &el, DLLNode *n, DLLNode *p) : 
 info(el), next(n), prev(p) 
{ 
} 
 
template<class T> 
class DoublyLinkedList 
{ 
public: 
 DoublyLinkedList(); 
 void addToDLLTail(const T &el); 
 bool deleteFromDLLTail(T &el); 
protected: 
 DLLNode<T> *head, *tail; 
}; 
 
template<class T> 
DoublyLinkedList<T>::DoublyLinkedList() : head(nullptr), tail(nullptr) 
{ 
} 



 
template<class T> 
void DoublyLinkedList<T>::addToDLLTail(const T &el) 
{ 
 if (tail != nullptr) 
 { 
  tail = new DLLNode<T>(el, nullptr, tail); 
  tail->prev->next = tail; 
 } 
 else 
  head = tail = new DLLNode<T>(el,nullptr,nullptr); 
} 
 
template<class T> 
bool DoublyLinkedList<T>::deleteFromDLLTail(T &el) 
{ 
 if (tail != nullptr) 
 { 
  el = tail->info; 
  if (head == tail) 
  { 
   delete head; 
   head = tail = nullptr; 
  } 
  else 
  { 
   tail = tail->prev; 
   delete tail->next; 
   tail->next = nullptr; 
  } 
  return true; 
 } 
 return false; 
} 
 
int main() 
{ 
 DoublyLinkedList<string>  dll; 
 dll.addToDLLTail("hello"); 
 dll.addToDLLTail("there"); 
 dll.addToDLLTail("A"); 
 dll.addToDLLTail("B"); 
 string element; 
 while (dll.deleteFromDLLTail(element)) 
  cout << element << endl; 
 system("pause"); 
} 
 

Note my version is slightly different from the book.  I use the more modern “nullptr” and separate out 

some of the implementation from the class definition.  

We’ve left out cases like deleting from the middle or inserting into the middle – these will be coming for 

you as exercises 😊 

 



Skip Lists 

The biggest drawback to the linked lists we’ve examined is that they are sequential in nature. Searching 

for a particular element requires we look at every node in the list starting from head until we find the 

target or reach the end of the list. While ordering the elements on frequency of access can help, the 

processing is still sequential. To improve on this, a variation called a skip list can be used to implement 

non-sequential searching of a linked list.  We require the list sort the elements in ascending order. 

The idea is that every second node points to the node two positions ahead and every fourth node points 

to the node four positions ahead, and so on.  

 

A skip list with (a) evenly and (b) unevenly spaced nodes of different levels; (c) the skip list with pointer 

nodes clearly shown 

• In general, in a list of n nodes, for k such that 1 < k < ⌊lg 𝑛⌋ and i such that 1 < i < ⌊𝑛 2𝑘−1⁄ ⌋, the 

node at location 2𝑘−1* i points to the node at location 2𝑘−1* (i – 1) 

• This is implemented by having different numbers of pointers in the nodes – half have one 

pointer, a quarter have two pointers, and so on 

• The number of pointers determines the level of the node, and the number of levels is ⌊lg 𝑛⌋ + 1 

Search idea: 

• To find a target value in the list, we start with the highest level pointers 



• These are followed until we find the target, reach the end of the list, or reach a node whose 

data value is larger than the target 

• In the latter two cases, we back up to the node preceding the larger data value, go to the next 

level of pointers, and restart 

• This process is repeated until we find the target, or reach the end of the list or a larger value 

when traversing the first-level links 

 

Pseudocode for search: 

Search(element el) 

 p = the nonempty list on the highest level i 

 while el not found and i != 0 

  if p->key > el 

   p = a sublist that begins in the predecessor of p on level i-1 

  else if p->key < el 

   if p is the last node on level i 

    p = a nonempty list that begins in p on the highest level < i 

    i = the number of the new level 

   else 

    p=p->next 

 

Searching is now more efficient, at the expense of insertion and deletion operations. If we have lgn 

levels then the search time is O(lgn).  In the worst case, all the lists are on the same level, and we get a 

regular linked list. Inserting a new node, for example, requires restructuring of the nodes that follow the 

new node. In particular, the number of pointers and their values must be changed. 

  



Self-Organizing Lists 

Another way to speed up search in a list is to dynamically re-organize the list as it is used.  There are 

several ways to do this.  Here are four approaches: 

1. Move to front.   When the target is found, it is moved to the front of the list 

2. Transpose. When the target is found, it is swapped with its predecessor in the list 

3. Count. The list is ordered by frequency of access 

4. Ordering. The list is ordered based on the natural nature of the data (e.g. alphabetical, known 

types such as prioritizing dogs over birds if dogs are more popular) 

Runtime for 1 and 2 is O(1) for a single move or transpose.  Count might take O(n) to scan back through 

the list to find the correct location for the newly increment count. 

 

We can insert new nodes either in the front or at the end. How do we analyze the runtime of these 

algorithms? The efficiency is going to vary based upon the type of data access. 

A typical approach that is used is to measure the runtime experimentally.  Come up with an actual 

dataset and measure how many operations it takes to search a number of elements, perhaps randomly 

selected or artificially selected.  

Another approach is to compare to the optimal static ordering. We order the data by the frequency of 

their occurrence in the search list. This only works for a static search test set.  Using this as a 

comparison, the count and move-to-front methods are, in the long run, at most twice as costly as the 

optimal.  

There is general improvement for all techniques as the size of the data increases. For small lists, a simple 

linked list suffices. 



Sparse Tables 

Tables are used for many applications and are typically represented as a 2D array. However, sometimes 

the table has mostly empty space.  This is called a sparse table. In these cases, instead of a 2D array, an 

alternative representation like a linked list can save memory at the expense of slower access time. 

For example, consider storing grades for 8000 students that are enrolled in some subset of 300 classes. 

We could use 1D arrays for students, classes, and grade codes: 

We could store the actual grades in a 2D array but most of the array would be empty.  We could use 

some techniques to cut down on storage, like use only 4 bits per grade, since we only need to store a-j 

or blank, but there is still a lot of wasted space. 

 

 



An alternate approach is to use two 2D arrays instead that maps classes taken and students in classes.  

The classes taken table stores the class number and grade for each student, but is limited to 8 classes 

per student. 

The studentsInClasses table lets us start from a class and get the ID and grade of all students in that 

class. However it is limited to 250 students per class. 

 

 

While there is better space utilization than one giant array, there are still limitations to this approach. If 

we want to have a student take more than 8 classes then we have a problem. Similarly, we can’t have a 

class with more than 250 students. We could make the arrays bigger but then we’d have more wasted 

blank space. 

A solution is to use linked lists accessible by class number and another accessible by student number.  

Then the linked lists scale based upon how many classes a student took or how many students are in a 

class. 

We could even share space by creating a Node that has both the student ID, class ID, and grade.  This 

node could then be linked for a list of all classes a student is in, or all students for a particular class. 

 

  



 

 

The above is a great example where you might want to create your own linked data structure.  If you 

just want a more straightforward list then most programming languages have a library of common data 

structures. 

The Standard Template Library in C++ includes a list template type that is implemented as a doubly-

linked list to the head and the tail. The following code demonstrates common list operations; see the 

book for a listing of other functions. 

 

  



 

#include <iostream> 
#include <string> 
#include <list> 
 
using namespace std; 
 
void printList(list<string> lst) 
{ 
 for (string s : lst) 
 { 
  cout << s << " "; 
 } 
 cout << endl; 
} 
 
int main() 
{ 
 list<string> lst; 
 
 lst.push_back("A"); 
 lst.push_back("B"); 
 lst.push_back("C"); 
 printList(lst);  // A B C 
 
 lst.push_front("First"); 
 printList(lst); // First A B C 
 
 lst.remove("B");  // First A C ; removes all nodes with B 
 printList(lst); 
 
 auto iterator = lst.begin();  // iterator or "pointer" to first element 
 cout << *iterator << endl;  // First 
 iterator++; 
 cout << *iterator << endl;  // A 
 
 // Erase the element referenced by the iterator 
 lst.erase(iterator); 
 printList(lst);   // First C 
 
 // Erase everything 
 lst.erase(lst.begin(), lst.end()); 
 printList(lst);  // Nothing 
 
 lst.push_back("D"); 
 lst.push_back("C"); 
 lst.push_back("B"); 
 lst.push_back("A");   // D C B A 
 cout << lst.size() << endl;    // 4 
 string s = lst.front(); 
 cout << s << endl;   // D 
 lst.pop_front(); 
 printList(lst); // C B A 
 
 iterator = lst.begin(); 
 iterator++;  // Points to B 
 lst.insert(iterator, "Z");  // C Z B A    



 printList(lst); 
 
 lst.sort(); 
 printList(lst); // A B C Z;  requires overloaded comparison for type T 
 
 system("pause"); 
} 


